Metamath Proof Explorer


Theorem con2bi

Description: Contraposition. Theorem *4.12 of WhiteheadRussell p. 117. (Contributed by NM, 15-Apr-1995) (Proof shortened by Wolf Lammen, 3-Jan-2013)

Ref Expression
Assertion con2bi ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 notbi ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ ¬ 𝜓 ) )
2 notnotb ( 𝜓 ↔ ¬ ¬ 𝜓 )
3 2 bibi2i ( ( ¬ 𝜑𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ ¬ 𝜓 ) )
4 bicom ( ( ¬ 𝜑𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) )
5 1 3 4 3bitr2i ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) )