Description: Contraposition. Theorem *4.12 of WhiteheadRussell p. 117. (Contributed by NM, 15-Apr-1995) (Proof shortened by Wolf Lammen, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | con2bi | ⊢ ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbi | ⊢ ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ ¬ 𝜓 ) ) | |
2 | notnotb | ⊢ ( 𝜓 ↔ ¬ ¬ 𝜓 ) | |
3 | 2 | bibi2i | ⊢ ( ( ¬ 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ ¬ 𝜓 ) ) |
4 | bicom | ⊢ ( ( ¬ 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) ) | |
5 | 1 3 4 | 3bitr2i | ⊢ ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) ) |