Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | con2bid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) ) | |
| Assertion | con2bid | ⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) ) | |
| 2 | con2bi | ⊢ ( ( 𝜒 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜒 ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |