Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con2bid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) ) | |
Assertion | con2bid | ⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) ) | |
2 | con2bi | ⊢ ( ( 𝜒 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜒 ) ) | |
3 | 1 2 | sylibr | ⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |