Description: A contraposition inference. (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | con2bii.1 | ⊢ ( 𝜑 ↔ ¬ 𝜓 ) | |
| Assertion | con2bii | ⊢ ( 𝜓 ↔ ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bii.1 | ⊢ ( 𝜑 ↔ ¬ 𝜓 ) | |
| 2 | notnotb | ⊢ ( 𝜓 ↔ ¬ ¬ 𝜓 ) | |
| 3 | 2 1 | xchbinxr | ⊢ ( 𝜓 ↔ ¬ 𝜑 ) |