Description: A biconditional form of contraposition. Theorem *4.1 of WhiteheadRussell p. 116. (Contributed by NM, 11-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | con34b | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜓 → ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) ) | |
2 | con4 | ⊢ ( ( ¬ 𝜓 → ¬ 𝜑 ) → ( 𝜑 → 𝜓 ) ) | |
3 | 1 2 | impbii | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜓 → ¬ 𝜑 ) ) |