Description: A contraposition inference. (Contributed by NM, 21-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con4bii.1 | ⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) | |
Assertion | con4bii | ⊢ ( 𝜑 ↔ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bii.1 | ⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) | |
2 | notbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | |
3 | 1 2 | mpbir | ⊢ ( 𝜑 ↔ 𝜓 ) |