Description: A contraposition inference. (Contributed by NM, 21-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | con4bii.1 | ⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) | |
| Assertion | con4bii | ⊢ ( 𝜑 ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | ⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) | |
| 2 | notbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | |
| 3 | 1 2 | mpbir | ⊢ ( 𝜑 ↔ 𝜓 ) |