Metamath Proof Explorer
Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ).
(Contributed by Jarvin Udandy, 6-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
confun.1 |
⊢ 𝜑 |
|
|
confun.2 |
⊢ ( 𝜒 → 𝜓 ) |
|
|
confun.3 |
⊢ ( 𝜒 → 𝜃 ) |
|
|
confun.4 |
⊢ ( 𝜑 → ( 𝜑 → 𝜓 ) ) |
|
Assertion |
confun |
⊢ ( 𝜒 → ( 𝜃 ↔ 𝜑 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
confun.1 |
⊢ 𝜑 |
2 |
|
confun.2 |
⊢ ( 𝜒 → 𝜓 ) |
3 |
|
confun.3 |
⊢ ( 𝜒 → 𝜃 ) |
4 |
|
confun.4 |
⊢ ( 𝜑 → ( 𝜑 → 𝜓 ) ) |
5 |
|
ax-1 |
⊢ ( 𝜒 → ( 𝜃 → 𝜒 ) ) |
6 |
3
|
a1i |
⊢ ( 𝜒 → ( 𝜒 → 𝜃 ) ) |
7 |
5 6
|
impbid |
⊢ ( 𝜒 → ( 𝜃 ↔ 𝜒 ) ) |
8 |
1 4
|
ax-mp |
⊢ ( 𝜑 → 𝜓 ) |
9 |
|
ax-1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜑 ) ) |
10 |
1 9
|
ax-mp |
⊢ ( 𝜓 → 𝜑 ) |
11 |
8 10
|
impbii |
⊢ ( 𝜑 ↔ 𝜓 ) |
12 |
2 11
|
sylibr |
⊢ ( 𝜒 → 𝜑 ) |
13 |
12
|
a1i |
⊢ ( 𝜒 → ( 𝜒 → 𝜑 ) ) |
14 |
|
ax-1 |
⊢ ( 𝜒 → ( 𝜑 → 𝜒 ) ) |
15 |
13 14
|
impbid |
⊢ ( 𝜒 → ( 𝜒 ↔ 𝜑 ) ) |
16 |
7 15
|
bitrd |
⊢ ( 𝜒 → ( 𝜃 ↔ 𝜑 ) ) |