Metamath Proof Explorer


Theorem confun

Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun.1 𝜑
confun.2 ( 𝜒𝜓 )
confun.3 ( 𝜒𝜃 )
confun.4 ( 𝜑 → ( 𝜑𝜓 ) )
Assertion confun ( 𝜒 → ( 𝜃𝜑 ) )

Proof

Step Hyp Ref Expression
1 confun.1 𝜑
2 confun.2 ( 𝜒𝜓 )
3 confun.3 ( 𝜒𝜃 )
4 confun.4 ( 𝜑 → ( 𝜑𝜓 ) )
5 ax-1 ( 𝜒 → ( 𝜃𝜒 ) )
6 3 a1i ( 𝜒 → ( 𝜒𝜃 ) )
7 5 6 impbid ( 𝜒 → ( 𝜃𝜒 ) )
8 1 4 ax-mp ( 𝜑𝜓 )
9 ax-1 ( 𝜑 → ( 𝜓𝜑 ) )
10 1 9 ax-mp ( 𝜓𝜑 )
11 8 10 impbii ( 𝜑𝜓 )
12 2 11 sylibr ( 𝜒𝜑 )
13 12 a1i ( 𝜒 → ( 𝜒𝜑 ) )
14 ax-1 ( 𝜒 → ( 𝜑𝜒 ) )
15 13 14 impbid ( 𝜒 → ( 𝜒𝜑 ) )
16 7 15 bitrd ( 𝜒 → ( 𝜃𝜑 ) )