Description: Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | confun2.1 | ⊢ ( 𝜓 → 𝜑 ) | |
confun2.2 | ⊢ ( 𝜓 → ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) ) | ||
confun2.3 | ⊢ ( ( 𝜓 → 𝜑 ) → ( ( 𝜓 → 𝜑 ) → 𝜑 ) ) | ||
Assertion | confun2 | ⊢ ( 𝜓 → ( ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) ↔ ( 𝜓 → 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | confun2.1 | ⊢ ( 𝜓 → 𝜑 ) | |
2 | confun2.2 | ⊢ ( 𝜓 → ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) ) | |
3 | confun2.3 | ⊢ ( ( 𝜓 → 𝜑 ) → ( ( 𝜓 → 𝜑 ) → 𝜑 ) ) | |
4 | 1 1 2 3 | confun | ⊢ ( 𝜓 → ( ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) ↔ ( 𝜓 → 𝜑 ) ) ) |