Metamath Proof Explorer


Theorem confun2

Description: Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun2.1 ( 𝜓𝜑 )
confun2.2 ( 𝜓 → ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) )
confun2.3 ( ( 𝜓𝜑 ) → ( ( 𝜓𝜑 ) → 𝜑 ) )
Assertion confun2 ( 𝜓 → ( ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) ↔ ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 confun2.1 ( 𝜓𝜑 )
2 confun2.2 ( 𝜓 → ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) )
3 confun2.3 ( ( 𝜓𝜑 ) → ( ( 𝜓𝜑 ) → 𝜑 ) )
4 1 1 2 3 confun ( 𝜓 → ( ¬ ( 𝜓 → ( 𝜓 ∧ ¬ 𝜓 ) ) ↔ ( 𝜓𝜑 ) ) )