Metamath Proof Explorer


Theorem confun3

Description: Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun3.1 ( 𝜑 ↔ ( 𝜒𝜓 ) )
confun3.2 ( 𝜃 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
confun3.3 ( 𝜒𝜓 )
confun3.4 ( 𝜒 → ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
confun3.5 ( ( 𝜒𝜓 ) → ( ( 𝜒𝜓 ) → 𝜓 ) )
Assertion confun3 ( 𝜒 → ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 confun3.1 ( 𝜑 ↔ ( 𝜒𝜓 ) )
2 confun3.2 ( 𝜃 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
3 confun3.3 ( 𝜒𝜓 )
4 confun3.4 ( 𝜒 → ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
5 confun3.5 ( ( 𝜒𝜓 ) → ( ( 𝜒𝜓 ) → 𝜓 ) )
6 3 3 4 5 confun ( 𝜒 → ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ ( 𝜒𝜓 ) ) )