Description: Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | confun3.1 | ⊢ ( 𝜑 ↔ ( 𝜒 → 𝜓 ) ) | |
confun3.2 | ⊢ ( 𝜃 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) | ||
confun3.3 | ⊢ ( 𝜒 → 𝜓 ) | ||
confun3.4 | ⊢ ( 𝜒 → ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) | ||
confun3.5 | ⊢ ( ( 𝜒 → 𝜓 ) → ( ( 𝜒 → 𝜓 ) → 𝜓 ) ) | ||
Assertion | confun3 | ⊢ ( 𝜒 → ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ ( 𝜒 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | confun3.1 | ⊢ ( 𝜑 ↔ ( 𝜒 → 𝜓 ) ) | |
2 | confun3.2 | ⊢ ( 𝜃 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) | |
3 | confun3.3 | ⊢ ( 𝜒 → 𝜓 ) | |
4 | confun3.4 | ⊢ ( 𝜒 → ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) | |
5 | confun3.5 | ⊢ ( ( 𝜒 → 𝜓 ) → ( ( 𝜒 → 𝜓 ) → 𝜓 ) ) | |
6 | 3 3 4 5 | confun | ⊢ ( 𝜒 → ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ ( 𝜒 → 𝜓 ) ) ) |