Step |
Hyp |
Ref |
Expression |
1 |
|
confun4.1 |
⊢ 𝜑 |
2 |
|
confun4.2 |
⊢ ( ( 𝜑 → 𝜓 ) → 𝜓 ) |
3 |
|
confun4.3 |
⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) |
4 |
|
confun4.4 |
⊢ ( ( 𝜒 → 𝜃 ) → ( ( 𝜑 → 𝜃 ) ↔ 𝜓 ) ) |
5 |
|
confun4.5 |
⊢ ( 𝜏 ↔ ( 𝜒 → 𝜃 ) ) |
6 |
|
confun4.6 |
⊢ ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) |
7 |
|
confun4.7 |
⊢ 𝜓 |
8 |
|
confun4.8 |
⊢ ( 𝜒 → 𝜃 ) |
9 |
7 3
|
ax-mp |
⊢ ( 𝜑 → 𝜒 ) |
10 |
1 9
|
ax-mp |
⊢ 𝜒 |
11 |
|
bicom1 |
⊢ ( ( 𝜏 ↔ ( 𝜒 → 𝜃 ) ) → ( ( 𝜒 → 𝜃 ) ↔ 𝜏 ) ) |
12 |
5 11
|
ax-mp |
⊢ ( ( 𝜒 → 𝜃 ) ↔ 𝜏 ) |
13 |
12
|
biimpi |
⊢ ( ( 𝜒 → 𝜃 ) → 𝜏 ) |
14 |
8 13
|
ax-mp |
⊢ 𝜏 |
15 |
7 14
|
pm3.2i |
⊢ ( 𝜓 ∧ 𝜏 ) |
16 |
|
pm3.4 |
⊢ ( ( 𝜓 ∧ 𝜏 ) → ( 𝜓 → 𝜏 ) ) |
17 |
15 16
|
ax-mp |
⊢ ( 𝜓 → 𝜏 ) |
18 |
10 17
|
pm3.2i |
⊢ ( 𝜒 ∧ ( 𝜓 → 𝜏 ) ) |
19 |
|
pm3.4 |
⊢ ( ( 𝜒 ∧ ( 𝜓 → 𝜏 ) ) → ( 𝜒 → ( 𝜓 → 𝜏 ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( 𝜒 → ( 𝜓 → 𝜏 ) ) |