Metamath Proof Explorer


Theorem confun4

Description: An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun4.1 𝜑
confun4.2 ( ( 𝜑𝜓 ) → 𝜓 )
confun4.3 ( 𝜓 → ( 𝜑𝜒 ) )
confun4.4 ( ( 𝜒𝜃 ) → ( ( 𝜑𝜃 ) ↔ 𝜓 ) )
confun4.5 ( 𝜏 ↔ ( 𝜒𝜃 ) )
confun4.6 ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
confun4.7 𝜓
confun4.8 ( 𝜒𝜃 )
Assertion confun4 ( 𝜒 → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 confun4.1 𝜑
2 confun4.2 ( ( 𝜑𝜓 ) → 𝜓 )
3 confun4.3 ( 𝜓 → ( 𝜑𝜒 ) )
4 confun4.4 ( ( 𝜒𝜃 ) → ( ( 𝜑𝜃 ) ↔ 𝜓 ) )
5 confun4.5 ( 𝜏 ↔ ( 𝜒𝜃 ) )
6 confun4.6 ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
7 confun4.7 𝜓
8 confun4.8 ( 𝜒𝜃 )
9 7 3 ax-mp ( 𝜑𝜒 )
10 1 9 ax-mp 𝜒
11 bicom1 ( ( 𝜏 ↔ ( 𝜒𝜃 ) ) → ( ( 𝜒𝜃 ) ↔ 𝜏 ) )
12 5 11 ax-mp ( ( 𝜒𝜃 ) ↔ 𝜏 )
13 12 biimpi ( ( 𝜒𝜃 ) → 𝜏 )
14 8 13 ax-mp 𝜏
15 7 14 pm3.2i ( 𝜓𝜏 )
16 pm3.4 ( ( 𝜓𝜏 ) → ( 𝜓𝜏 ) )
17 15 16 ax-mp ( 𝜓𝜏 )
18 10 17 pm3.2i ( 𝜒 ∧ ( 𝜓𝜏 ) )
19 pm3.4 ( ( 𝜒 ∧ ( 𝜓𝜏 ) ) → ( 𝜒 → ( 𝜓𝜏 ) ) )
20 18 19 ax-mp ( 𝜒 → ( 𝜓𝜏 ) )