Metamath Proof Explorer


Theorem confun5

Description: An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses confun5.1 𝜑
confun5.2 ( ( 𝜑𝜓 ) → 𝜓 )
confun5.3 ( 𝜓 → ( 𝜑𝜒 ) )
confun5.4 ( ( 𝜒𝜃 ) → ( ( 𝜑𝜃 ) ↔ 𝜓 ) )
confun5.5 ( 𝜏 ↔ ( 𝜒𝜃 ) )
confun5.6 ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
confun5.7 𝜓
confun5.8 ( 𝜒𝜃 )
Assertion confun5 ( 𝜒 → ( 𝜂𝜏 ) )

Proof

Step Hyp Ref Expression
1 confun5.1 𝜑
2 confun5.2 ( ( 𝜑𝜓 ) → 𝜓 )
3 confun5.3 ( 𝜓 → ( 𝜑𝜒 ) )
4 confun5.4 ( ( 𝜒𝜃 ) → ( ( 𝜑𝜃 ) ↔ 𝜓 ) )
5 confun5.5 ( 𝜏 ↔ ( 𝜒𝜃 ) )
6 confun5.6 ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
7 confun5.7 𝜓
8 confun5.8 ( 𝜒𝜃 )
9 7 3 ax-mp ( 𝜑𝜒 )
10 1 9 ax-mp 𝜒
11 10 atnaiana ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) )
12 bicom1 ( ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) → ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ 𝜂 ) )
13 6 12 ax-mp ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ 𝜂 )
14 13 biimpi ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) → 𝜂 )
15 11 14 ax-mp 𝜂
16 bicom1 ( ( 𝜏 ↔ ( 𝜒𝜃 ) ) → ( ( 𝜒𝜃 ) ↔ 𝜏 ) )
17 5 16 ax-mp ( ( 𝜒𝜃 ) ↔ 𝜏 )
18 17 biimpi ( ( 𝜒𝜃 ) → 𝜏 )
19 8 18 ax-mp 𝜏
20 15 19 2th ( 𝜂𝜏 )
21 ax-1 ( ( 𝜂𝜏 ) → ( 𝜒 → ( 𝜂𝜏 ) ) )
22 20 21 ax-mp ( 𝜒 → ( 𝜂𝜏 ) )