Description: Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | congid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ ( 𝐵 − 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds0 | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∥ 0 ) | |
2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ 0 ) |
3 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
5 | 4 | subidd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 − 𝐵 ) = 0 ) |
6 | 2 5 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ ( 𝐵 − 𝐵 ) ) |