Description: If two integers are congruent mod A , so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | congneg | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵 − 𝐶 ) ) ) → 𝐴 ∥ ( - 𝐵 − - 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | congsym | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵 − 𝐶 ) ) ) → 𝐴 ∥ ( 𝐶 − 𝐵 ) ) | |
2 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
3 | zcn | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) | |
4 | neg2sub | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶 − 𝐵 ) ) | |
5 | 2 3 4 | syl2an | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶 − 𝐵 ) ) |
6 | 5 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵 − 𝐶 ) ) ) → ( - 𝐵 − - 𝐶 ) = ( 𝐶 − 𝐵 ) ) |
7 | 1 6 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵 − 𝐶 ) ) ) → 𝐴 ∥ ( - 𝐵 − - 𝐶 ) ) |