Metamath Proof Explorer


Theorem conimpfalt

Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses conimpfalt.1 𝜑
conimpfalt.2 ¬ 𝜓
conimpfalt.3 ( 𝜑𝜓 )
Assertion conimpfalt ( 𝜑 ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 conimpfalt.1 𝜑
2 conimpfalt.2 ¬ 𝜓
3 conimpfalt.3 ( 𝜑𝜓 )
4 3 2 aibnbaif ( 𝜑 ↔ ⊥ )