| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | conjghm.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | conjghm.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | conjghm.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 7 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴  +  𝑥 )  ∈  𝑋 ) | 
						
							| 8 | 7 | 3expa | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐴  +  𝑥 )  ∈  𝑋 ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 10 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  +  𝑥 )  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ∈  𝑋 ) | 
						
							| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ∈  𝑋 ) | 
						
							| 12 | 11 4 | fmptd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 15 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 16 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴  +  𝑦 )  ∈  𝑋 ) | 
						
							| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝐴  +  𝑦 )  ∈  𝑋 ) | 
						
							| 18 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  +  𝑦 )  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴  +  𝑦 )  −  𝐴 )  ∈  𝑋 ) | 
						
							| 19 | 13 17 14 18 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑦 )  −  𝐴 )  ∈  𝑋 ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 21 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑧  −  𝐴 )  ∈  𝑋 ) | 
						
							| 22 | 13 20 14 21 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑧  −  𝐴 )  ∈  𝑋 ) | 
						
							| 23 | 1 2 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝑧  −  𝐴 )  ∈  𝑋 ) )  →  ( ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  𝐴 )  +  ( 𝑧  −  𝐴 ) )  =  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  ( 𝐴  +  ( 𝑧  −  𝐴 ) ) ) ) | 
						
							| 24 | 13 19 14 22 23 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  𝐴 )  +  ( 𝑧  −  𝐴 ) )  =  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  ( 𝐴  +  ( 𝑧  −  𝐴 ) ) ) ) | 
						
							| 25 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  +  𝑦 )  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  𝐴 )  =  ( 𝐴  +  𝑦 ) ) | 
						
							| 26 | 13 17 14 25 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  𝐴 )  =  ( 𝐴  +  𝑦 ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  𝐴 )  +  ( 𝑧  −  𝐴 ) )  =  ( ( 𝐴  +  𝑦 )  +  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 28 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝐴  +  𝑦 )  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑦 )  +  𝑧 )  −  𝐴 )  =  ( ( 𝐴  +  𝑦 )  +  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 29 | 13 17 20 14 28 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑦 )  +  𝑧 )  −  𝐴 )  =  ( ( 𝐴  +  𝑦 )  +  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 30 | 1 2 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑦 )  +  𝑧 )  =  ( 𝐴  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 31 | 13 14 15 20 30 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑦 )  +  𝑧 )  =  ( 𝐴  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑦 )  +  𝑧 )  −  𝐴 )  =  ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 ) ) | 
						
							| 33 | 27 29 32 | 3eqtr2rd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 )  =  ( ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  𝐴 )  +  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 34 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑧 )  −  𝐴 )  =  ( 𝐴  +  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 35 | 13 14 20 14 34 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐴  +  𝑧 )  −  𝐴 )  =  ( 𝐴  +  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  ( ( 𝐴  +  𝑧 )  −  𝐴 ) )  =  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  ( 𝐴  +  ( 𝑧  −  𝐴 ) ) ) ) | 
						
							| 37 | 24 33 36 | 3eqtr4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 )  =  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  ( ( 𝐴  +  𝑧 )  −  𝐴 ) ) ) | 
						
							| 38 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦  +  𝑧 )  ∈  𝑋 ) | 
						
							| 39 | 13 15 20 38 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦  +  𝑧 )  ∈  𝑋 ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  𝑧 )  →  ( 𝐴  +  𝑥 )  =  ( 𝐴  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑥  =  ( 𝑦  +  𝑧 )  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 ) ) | 
						
							| 42 |  | ovex | ⊢ ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 )  ∈  V | 
						
							| 43 | 41 4 42 | fvmpt | ⊢ ( ( 𝑦  +  𝑧 )  ∈  𝑋  →  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 ) ) | 
						
							| 44 | 39 43 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐴  +  ( 𝑦  +  𝑧 ) )  −  𝐴 ) ) | 
						
							| 45 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  +  𝑥 )  =  ( 𝐴  +  𝑦 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( ( 𝐴  +  𝑦 )  −  𝐴 ) ) | 
						
							| 47 |  | ovex | ⊢ ( ( 𝐴  +  𝑦 )  −  𝐴 )  ∈  V | 
						
							| 48 | 46 4 47 | fvmpt | ⊢ ( 𝑦  ∈  𝑋  →  ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐴  +  𝑦 )  −  𝐴 ) ) | 
						
							| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐴  +  𝑦 )  −  𝐴 ) ) | 
						
							| 50 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐴  +  𝑥 )  =  ( 𝐴  +  𝑧 ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  ( ( 𝐴  +  𝑧 )  −  𝐴 ) ) | 
						
							| 52 |  | ovex | ⊢ ( ( 𝐴  +  𝑧 )  −  𝐴 )  ∈  V | 
						
							| 53 | 51 4 52 | fvmpt | ⊢ ( 𝑧  ∈  𝑋  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 𝐴  +  𝑧 )  −  𝐴 ) ) | 
						
							| 54 | 53 | ad2antll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 𝐴  +  𝑧 )  −  𝐴 ) ) | 
						
							| 55 | 49 54 | oveq12d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐹 ‘ 𝑧 ) )  =  ( ( ( 𝐴  +  𝑦 )  −  𝐴 )  +  ( ( 𝐴  +  𝑧 )  −  𝐴 ) ) ) | 
						
							| 56 | 37 44 55 | 3eqtr4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  +  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 57 | 1 1 2 2 5 5 12 56 | isghmd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 58 | 5 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 59 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 60 | 1 59 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 62 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 63 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 64 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑦  +  𝐴 )  ∈  𝑋 ) | 
						
							| 65 | 58 62 63 64 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑦  +  𝐴 )  ∈  𝑋 ) | 
						
							| 66 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋  ∧  ( 𝑦  +  𝐴 )  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  ∈  𝑋 ) | 
						
							| 67 | 58 61 65 66 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  ∈  𝑋 ) | 
						
							| 68 | 5 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 69 | 65 | adantrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦  +  𝐴 )  ∈  𝑋 ) | 
						
							| 70 | 8 | adantrr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐴  +  𝑥 )  ∈  𝑋 ) | 
						
							| 71 | 60 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 72 | 1 2 | grplcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑦  +  𝐴 )  ∈  𝑋  ∧  ( 𝐴  +  𝑥 )  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐴  +  𝑥 ) )  ↔  ( 𝑦  +  𝐴 )  =  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 73 | 68 69 70 71 72 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐴  +  𝑥 ) )  ↔  ( 𝑦  +  𝐴 )  =  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 75 | 1 2 74 59 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐴 )  +  𝑥 )  =  ( ( 0g ‘ 𝐺 )  +  𝑥 ) ) | 
						
							| 78 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 79 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 80 | 1 2 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐴 )  +  𝑥 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 81 | 68 71 78 79 80 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐴 )  +  𝑥 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 82 | 1 2 74 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥 ) | 
						
							| 83 | 82 | ad2ant2r | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 0g ‘ 𝐺 )  +  𝑥 )  =  𝑥 ) | 
						
							| 84 | 77 81 83 | 3eqtr3rd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 85 | 84 | eqeq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  =  𝑥  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐴  +  𝑥 ) ) ) ) | 
						
							| 86 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 87 | 1 2 3 | grpsubadd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝐴  +  𝑥 )  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  𝑦  ↔  ( 𝑦  +  𝐴 )  =  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 88 | 68 70 78 86 87 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  𝑦  ↔  ( 𝑦  +  𝐴 )  =  ( 𝐴  +  𝑥 ) ) ) | 
						
							| 89 | 73 85 88 | 3bitr4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  =  𝑥  ↔  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  𝑦 ) ) | 
						
							| 90 |  | eqcom | ⊢ ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  =  𝑥 ) | 
						
							| 91 |  | eqcom | ⊢ ( 𝑦  =  ( ( 𝐴  +  𝑥 )  −  𝐴 )  ↔  ( ( 𝐴  +  𝑥 )  −  𝐴 )  =  𝑦 ) | 
						
							| 92 | 89 90 91 | 3bitr4g | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝑦  +  𝐴 ) )  ↔  𝑦  =  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) ) | 
						
							| 93 | 4 11 67 92 | f1o2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐹 : 𝑋 –1-1-onto→ 𝑋 ) | 
						
							| 94 | 57 93 | jca | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐹  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑋 ) ) |