| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → 𝑃 ∈ ℂ ) |
| 2 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → 𝑄 ∈ ℂ ) |
| 3 |
|
reccl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( 1 / 𝑃 ) ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 / 𝑃 ) ∈ ℂ ) |
| 5 |
1 2 4
|
mul32d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) = ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) ) |
| 6 |
|
recid |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( 𝑃 · ( 1 / 𝑃 ) ) = 1 ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) = ( 1 · 𝑄 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) = ( 1 · 𝑄 ) ) |
| 9 |
|
mullid |
⊢ ( 𝑄 ∈ ℂ → ( 1 · 𝑄 ) = 𝑄 ) |
| 10 |
9
|
ad2antrl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 · 𝑄 ) = 𝑄 ) |
| 11 |
5 8 10
|
3eqtrd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) = 𝑄 ) |
| 12 |
|
reccl |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 1 / 𝑄 ) ∈ ℂ ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 / 𝑄 ) ∈ ℂ ) |
| 14 |
1 2 13
|
mulassd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) = ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) ) |
| 15 |
|
recid |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 𝑄 · ( 1 / 𝑄 ) ) = 1 ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝑃 · 1 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝑃 · 1 ) ) |
| 18 |
|
mulrid |
⊢ ( 𝑃 ∈ ℂ → ( 𝑃 · 1 ) = 𝑃 ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 1 ) = 𝑃 ) |
| 20 |
14 17 19
|
3eqtrd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) = 𝑃 ) |
| 21 |
11 20
|
oveq12d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) + ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) ) = ( 𝑄 + 𝑃 ) ) |
| 22 |
|
mulcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 · 𝑄 ) ∈ ℂ ) |
| 23 |
22
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 𝑄 ) ∈ ℂ ) |
| 24 |
23 4 13
|
adddid |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) + ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) ) ) |
| 25 |
|
addcom |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
| 26 |
25
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
| 27 |
21 24 26
|
3eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( 𝑃 + 𝑄 ) ) |
| 28 |
22
|
mulridd |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 · 𝑄 ) · 1 ) = ( 𝑃 · 𝑄 ) ) |
| 29 |
28
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · 1 ) = ( 𝑃 · 𝑄 ) ) |
| 30 |
27 29
|
eqeq12d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ) ) |
| 31 |
|
addcl |
⊢ ( ( ( 1 / 𝑃 ) ∈ ℂ ∧ ( 1 / 𝑄 ) ∈ ℂ ) → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ) |
| 32 |
3 12 31
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ) |
| 33 |
|
mulne0 |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 𝑄 ) ≠ 0 ) |
| 34 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 35 |
|
mulcan |
⊢ ( ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( 𝑃 · 𝑄 ) ∈ ℂ ∧ ( 𝑃 · 𝑄 ) ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
| 36 |
34 35
|
mp3an2 |
⊢ ( ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ∧ ( ( 𝑃 · 𝑄 ) ∈ ℂ ∧ ( 𝑃 · 𝑄 ) ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
| 37 |
32 23 33 36
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
| 38 |
|
eqcom |
⊢ ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( 𝑃 · 𝑄 ) = ( 𝑃 + 𝑄 ) ) |
| 39 |
|
muleqadd |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 · 𝑄 ) = ( 𝑃 + 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
| 40 |
38 39
|
bitrid |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
| 41 |
40
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
| 42 |
30 37 41
|
3bitr3d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |