Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → 𝑃 ∈ ℂ ) |
2 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → 𝑄 ∈ ℂ ) |
3 |
|
reccl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( 1 / 𝑃 ) ∈ ℂ ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 / 𝑃 ) ∈ ℂ ) |
5 |
1 2 4
|
mul32d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) = ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) ) |
6 |
|
recid |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( 𝑃 · ( 1 / 𝑃 ) ) = 1 ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) = ( 1 · 𝑄 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) = ( 1 · 𝑄 ) ) |
9 |
|
mulid2 |
⊢ ( 𝑄 ∈ ℂ → ( 1 · 𝑄 ) = 𝑄 ) |
10 |
9
|
ad2antrl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 · 𝑄 ) = 𝑄 ) |
11 |
5 8 10
|
3eqtrd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) = 𝑄 ) |
12 |
|
reccl |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 1 / 𝑄 ) ∈ ℂ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 / 𝑄 ) ∈ ℂ ) |
14 |
1 2 13
|
mulassd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) = ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) ) |
15 |
|
recid |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 𝑄 · ( 1 / 𝑄 ) ) = 1 ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝑃 · 1 ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝑃 · 1 ) ) |
18 |
|
mulid1 |
⊢ ( 𝑃 ∈ ℂ → ( 𝑃 · 1 ) = 𝑃 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 1 ) = 𝑃 ) |
20 |
14 17 19
|
3eqtrd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) = 𝑃 ) |
21 |
11 20
|
oveq12d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) + ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) ) = ( 𝑄 + 𝑃 ) ) |
22 |
|
mulcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 · 𝑄 ) ∈ ℂ ) |
23 |
22
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 𝑄 ) ∈ ℂ ) |
24 |
23 4 13
|
adddid |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) + ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) ) ) |
25 |
|
addcom |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
26 |
25
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
27 |
21 24 26
|
3eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( 𝑃 + 𝑄 ) ) |
28 |
22
|
mulid1d |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 · 𝑄 ) · 1 ) = ( 𝑃 · 𝑄 ) ) |
29 |
28
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · 1 ) = ( 𝑃 · 𝑄 ) ) |
30 |
27 29
|
eqeq12d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ) ) |
31 |
|
addcl |
⊢ ( ( ( 1 / 𝑃 ) ∈ ℂ ∧ ( 1 / 𝑄 ) ∈ ℂ ) → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ) |
32 |
3 12 31
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ) |
33 |
|
mulne0 |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 𝑄 ) ≠ 0 ) |
34 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
35 |
|
mulcan |
⊢ ( ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( 𝑃 · 𝑄 ) ∈ ℂ ∧ ( 𝑃 · 𝑄 ) ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
36 |
34 35
|
mp3an2 |
⊢ ( ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ∧ ( ( 𝑃 · 𝑄 ) ∈ ℂ ∧ ( 𝑃 · 𝑄 ) ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
37 |
32 23 33 36
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
38 |
|
eqcom |
⊢ ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( 𝑃 · 𝑄 ) = ( 𝑃 + 𝑄 ) ) |
39 |
|
muleqadd |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 · 𝑄 ) = ( 𝑃 + 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
40 |
38 39
|
syl5bb |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
41 |
40
|
ad2ant2r |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
42 |
30 37 41
|
3bitr3d |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |