| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
conjghm.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
conjghm.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
conjsubg.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
| 5 |
|
conjnmz.1 |
⊢ 𝑁 = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } |
| 6 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 8 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 9 |
5
|
ssrab3 |
⊢ 𝑁 ⊆ 𝑋 |
| 10 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑁 ) |
| 11 |
9 10
|
sselid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 12 |
1 8 7 11
|
grpinvcld |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 13 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 ⊆ 𝑋 ) |
| 15 |
14
|
sselda |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) |
| 16 |
1 2 7 12 15 11
|
grpassd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 18 |
1 2 17 8 7 11
|
grprinvd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( ( 0g ‘ 𝐺 ) + 𝑤 ) ) |
| 20 |
1 2 7 11 12 15
|
grpassd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ) |
| 21 |
1 2 17 7 15
|
grplidd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
| 22 |
19 20 21
|
3eqtr3d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) = 𝑤 ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑆 ) |
| 24 |
22 23
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ) |
| 25 |
1 2 7 12 15
|
grpcld |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) |
| 26 |
5
|
nmzbi |
⊢ ( ( 𝐴 ∈ 𝑁 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 27 |
10 25 26
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 28 |
24 27
|
mpbid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) |
| 29 |
16 28
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) |
| 30 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) |
| 31 |
30
|
oveq1d |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
| 32 |
|
ovex |
⊢ ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ∈ V |
| 33 |
31 4 32
|
fvmpt |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
| 34 |
29 33
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
| 35 |
18
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) ) |
| 36 |
1 2 7 15 11
|
grpcld |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 + 𝐴 ) ∈ 𝑋 ) |
| 37 |
1 2 7 11 12 36
|
grpassd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) |
| 38 |
1 2 17 7 36
|
grplidd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) = ( 𝑤 + 𝐴 ) ) |
| 39 |
35 37 38
|
3eqtr3d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( 𝑤 + 𝐴 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) = ( ( 𝑤 + 𝐴 ) − 𝐴 ) ) |
| 41 |
1 2 3
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 + 𝐴 ) − 𝐴 ) = 𝑤 ) |
| 42 |
7 15 11 41
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑤 + 𝐴 ) − 𝐴 ) = 𝑤 ) |
| 43 |
34 40 42
|
3eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = 𝑤 ) |
| 44 |
|
ovex |
⊢ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ V |
| 45 |
44 4
|
fnmpti |
⊢ 𝐹 Fn 𝑆 |
| 46 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑆 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 ) |
| 47 |
45 29 46
|
sylancr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 ) |
| 48 |
43 47
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ ran 𝐹 ) |
| 49 |
48
|
ex |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹 ) ) |
| 50 |
49
|
ssrdv |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 ⊆ ran 𝐹 ) |
| 51 |
6
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 52 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑁 ) |
| 53 |
9 52
|
sselid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 54 |
14
|
sselda |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑋 ) |
| 55 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
| 56 |
51 53 54 53 55
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
| 57 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
| 58 |
51 54 53 57
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 60 |
58 59
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) |
| 61 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
| 62 |
51 54 53 61
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
| 63 |
5
|
nmzbi |
⊢ ( ( 𝐴 ∈ 𝑁 ∧ ( 𝑥 − 𝐴 ) ∈ 𝑋 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 64 |
52 62 63
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 65 |
60 64
|
mpbird |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ) |
| 66 |
56 65
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑆 ) |
| 67 |
66 4
|
fmptd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝐹 : 𝑆 ⟶ 𝑆 ) |
| 68 |
67
|
frnd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ran 𝐹 ⊆ 𝑆 ) |
| 69 |
50 68
|
eqssd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 = ran 𝐹 ) |