Step |
Hyp |
Ref |
Expression |
1 |
|
conjghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
conjghm.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
conjghm.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
conjsubg.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
5 |
|
conjnmz.1 |
⊢ 𝑁 = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } |
6 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
8 |
5
|
ssrab3 |
⊢ 𝑁 ⊆ 𝑋 |
9 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑁 ) |
10 |
8 9
|
sselid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
11 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
12 |
1 11
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
13 |
7 10 12
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
14 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 ⊆ 𝑋 ) |
16 |
15
|
sselda |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) |
17 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) |
18 |
7 13 16 10 17
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
20 |
1 2 19 11
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
21 |
7 10 20
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( ( 0g ‘ 𝐺 ) + 𝑤 ) ) |
23 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ) |
24 |
7 10 13 16 23
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ) |
25 |
1 2 19
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
26 |
7 16 25
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
27 |
22 24 26
|
3eqtr3d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) = 𝑤 ) |
28 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑆 ) |
29 |
27 28
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ) |
30 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) |
31 |
7 13 16 30
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) |
32 |
5
|
nmzbi |
⊢ ( ( 𝐴 ∈ 𝑁 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) ) |
33 |
9 31 32
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) ) |
34 |
29 33
|
mpbid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) |
35 |
18 34
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) |
36 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
38 |
|
ovex |
⊢ ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ∈ V |
39 |
37 4 38
|
fvmpt |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
40 |
35 39
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
41 |
21
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) ) |
42 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑤 + 𝐴 ) ∈ 𝑋 ) |
43 |
7 16 10 42
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 + 𝐴 ) ∈ 𝑋 ) |
44 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝑤 + 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) |
45 |
7 10 13 43 44
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) |
46 |
1 2 19
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑤 + 𝐴 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) = ( 𝑤 + 𝐴 ) ) |
47 |
7 43 46
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) = ( 𝑤 + 𝐴 ) ) |
48 |
41 45 47
|
3eqtr3d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( 𝑤 + 𝐴 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) = ( ( 𝑤 + 𝐴 ) − 𝐴 ) ) |
50 |
1 2 3
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 + 𝐴 ) − 𝐴 ) = 𝑤 ) |
51 |
7 16 10 50
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑤 + 𝐴 ) − 𝐴 ) = 𝑤 ) |
52 |
40 49 51
|
3eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = 𝑤 ) |
53 |
|
ovex |
⊢ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ V |
54 |
53 4
|
fnmpti |
⊢ 𝐹 Fn 𝑆 |
55 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑆 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 ) |
56 |
54 35 55
|
sylancr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 ) |
57 |
52 56
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ ran 𝐹 ) |
58 |
57
|
ex |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹 ) ) |
59 |
58
|
ssrdv |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 ⊆ ran 𝐹 ) |
60 |
6
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
61 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑁 ) |
62 |
8 61
|
sselid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
63 |
15
|
sselda |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑋 ) |
64 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
65 |
60 62 63 62 64
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
66 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
67 |
60 63 62 66
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
68 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
69 |
67 68
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) |
70 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
71 |
60 63 62 70
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
72 |
5
|
nmzbi |
⊢ ( ( 𝐴 ∈ 𝑁 ∧ ( 𝑥 − 𝐴 ) ∈ 𝑋 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) ) |
73 |
61 71 72
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) ) |
74 |
69 73
|
mpbird |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ) |
75 |
65 74
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑆 ) |
76 |
75 4
|
fmptd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝐹 : 𝑆 ⟶ 𝑆 ) |
77 |
76
|
frnd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ran 𝐹 ⊆ 𝑆 ) |
78 |
59 77
|
eqssd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 = ran 𝐹 ) |