Step |
Hyp |
Ref |
Expression |
1 |
|
conjghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
conjghm.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
conjghm.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
conjsubg.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
5 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
eqid |
⊢ { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } |
7 |
6 1 2
|
isnsg4 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } = 𝑋 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } = 𝑋 ) |
9 |
8
|
eleq2d |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐴 ∈ { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } ↔ 𝐴 ∈ 𝑋 ) ) |
10 |
9
|
biimpar |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } ) |
11 |
1 2 3 4 6
|
conjnmz |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } ) → 𝑆 = ran 𝐹 ) |
12 |
5 10 11
|
syl2an2r |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 = ran 𝐹 ) |