| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
conjghm.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
conjghm.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
conjsubg.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
| 5 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 7 |
|
df-ima |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) |
| 8 |
|
resmpt |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) |
| 9 |
8 4
|
eqtr4di |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = 𝐹 ) |
| 10 |
9
|
rneqd |
⊢ ( 𝑆 ⊆ 𝑋 → ran ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ran 𝐹 ) |
| 11 |
7 10
|
eqtrid |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran 𝐹 ) |
| 12 |
6 11
|
syl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran 𝐹 ) |
| 13 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
| 15 |
1 2 3 14
|
conjghm |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 16 |
13 15
|
sylan |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 17 |
16
|
simpld |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 18 |
|
simpl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 |
|
ghmima |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 |
12 20
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |