Step |
Hyp |
Ref |
Expression |
1 |
|
conjghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
conjghm.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
conjghm.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
conjsubg.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
5 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
7 |
|
df-ima |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) |
8 |
|
resmpt |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) |
9 |
8 4
|
eqtr4di |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = 𝐹 ) |
10 |
9
|
rneqd |
⊢ ( 𝑆 ⊆ 𝑋 → ran ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ran 𝐹 ) |
11 |
7 10
|
eqtrid |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran 𝐹 ) |
12 |
6 11
|
syl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran 𝐹 ) |
13 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
15 |
1 2 3 14
|
conjghm |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
16 |
13 15
|
sylan |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
18 |
|
simpl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
|
ghmima |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
12 20
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |