| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | conjghm.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | conjghm.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | conjsubg.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 5 |  | subgrcl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) | 
						
							| 7 | 1 2 3 6 | conjghm | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) | 
						
							| 8 | 5 7 | sylan | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) | 
						
							| 9 |  | f1of1 | ⊢ ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) : 𝑋 –1-1→ 𝑋 ) | 
						
							| 10 | 8 9 | simpl2im | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) : 𝑋 –1-1→ 𝑋 ) | 
						
							| 11 | 1 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 13 |  | f1ssres | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) : 𝑋 –1-1→ 𝑋  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 ) : 𝑆 –1-1→ 𝑋 ) | 
						
							| 14 | 10 12 13 | syl2anc | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 ) : 𝑆 –1-1→ 𝑋 ) | 
						
							| 15 | 12 | resmptd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) ) ) | 
						
							| 16 | 15 4 | eqtr4di | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 )  =  𝐹 ) | 
						
							| 17 |  | f1eq1 | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 )  =  𝐹  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 ) : 𝑆 –1-1→ 𝑋  ↔  𝐹 : 𝑆 –1-1→ 𝑋 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐴  +  𝑥 )  −  𝐴 ) )  ↾  𝑆 ) : 𝑆 –1-1→ 𝑋  ↔  𝐹 : 𝑆 –1-1→ 𝑋 ) ) | 
						
							| 19 | 14 18 | mpbid | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  𝐹 : 𝑆 –1-1→ 𝑋 ) | 
						
							| 20 |  | f1f1orn | ⊢ ( 𝐹 : 𝑆 –1-1→ 𝑋  →  𝐹 : 𝑆 –1-1-onto→ ran  𝐹 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  𝐹 : 𝑆 –1-1-onto→ ran  𝐹 ) | 
						
							| 22 |  | f1oeng | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐹 : 𝑆 –1-1-onto→ ran  𝐹 )  →  𝑆  ≈  ran  𝐹 ) | 
						
							| 23 | 21 22 | syldan | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  𝑋 )  →  𝑆  ≈  ran  𝐹 ) |