Step |
Hyp |
Ref |
Expression |
1 |
|
isconn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
connclo.1 |
⊢ ( 𝜑 → 𝐽 ∈ Conn ) |
3 |
|
connclo.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
4 |
|
connclo.3 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
5 |
|
connclo.4 |
⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
6 |
4
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
7 |
3 5
|
elind |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
8 |
1
|
isconn |
⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
9 |
8
|
simprbi |
⊢ ( 𝐽 ∈ Conn → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) |
11 |
7 10
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ { ∅ , 𝑋 } ) |
12 |
|
elpri |
⊢ ( 𝐴 ∈ { ∅ , 𝑋 } → ( 𝐴 = ∅ ∨ 𝐴 = 𝑋 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ 𝐴 = 𝑋 ) ) |
14 |
13
|
ord |
⊢ ( 𝜑 → ( ¬ 𝐴 = ∅ → 𝐴 = 𝑋 ) ) |
15 |
6 14
|
mpd |
⊢ ( 𝜑 → 𝐴 = 𝑋 ) |