| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conncn.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | conncn.j | ⊢ ( 𝜑  →  𝐽  ∈  Conn ) | 
						
							| 3 |  | conncn.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | conncn.u | ⊢ ( 𝜑  →  𝑈  ∈  𝐾 ) | 
						
							| 5 |  | conncn.c | ⊢ ( 𝜑  →  𝑈  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 6 |  | conncn.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 7 |  | conncn.1 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 9 | 1 8 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 11 | 10 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 12 | 10 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ∪  𝐾 ) | 
						
							| 13 |  | dffn4 | ⊢ ( 𝐹  Fn  𝑋  ↔  𝐹 : 𝑋 –onto→ ran  𝐹 ) | 
						
							| 14 | 11 13 | sylib | ⊢ ( 𝜑  →  𝐹 : 𝑋 –onto→ ran  𝐹 ) | 
						
							| 15 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 17 | 8 | restuni | ⊢ ( ( 𝐾  ∈  Top  ∧  ran  𝐹  ⊆  ∪  𝐾 )  →  ran  𝐹  =  ∪  ( 𝐾  ↾t  ran  𝐹 ) ) | 
						
							| 18 | 16 12 17 | syl2anc | ⊢ ( 𝜑  →  ran  𝐹  =  ∪  ( 𝐾  ↾t  ran  𝐹 ) ) | 
						
							| 19 |  | foeq3 | ⊢ ( ran  𝐹  =  ∪  ( 𝐾  ↾t  ran  𝐹 )  →  ( 𝐹 : 𝑋 –onto→ ran  𝐹  ↔  𝐹 : 𝑋 –onto→ ∪  ( 𝐾  ↾t  ran  𝐹 ) ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( 𝐹 : 𝑋 –onto→ ran  𝐹  ↔  𝐹 : 𝑋 –onto→ ∪  ( 𝐾  ↾t  ran  𝐹 ) ) ) | 
						
							| 21 | 14 20 | mpbid | ⊢ ( 𝜑  →  𝐹 : 𝑋 –onto→ ∪  ( 𝐾  ↾t  ran  𝐹 ) ) | 
						
							| 22 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 23 | 16 22 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 24 |  | ssidd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ran  𝐹 ) | 
						
							| 25 |  | cnrest2 | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  ran  𝐹  ⊆  ran  𝐹  ∧  ran  𝐹  ⊆  ∪  𝐾 )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) ) ) | 
						
							| 26 | 23 24 12 25 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) ) ) | 
						
							| 27 | 3 26 | mpbid | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) ) | 
						
							| 28 |  | eqid | ⊢ ∪  ( 𝐾  ↾t  ran  𝐹 )  =  ∪  ( 𝐾  ↾t  ran  𝐹 ) | 
						
							| 29 | 28 | cnconn | ⊢ ( ( 𝐽  ∈  Conn  ∧  𝐹 : 𝑋 –onto→ ∪  ( 𝐾  ↾t  ran  𝐹 )  ∧  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) )  →  ( 𝐾  ↾t  ran  𝐹 )  ∈  Conn ) | 
						
							| 30 | 2 21 27 29 | syl3anc | ⊢ ( 𝜑  →  ( 𝐾  ↾t  ran  𝐹 )  ∈  Conn ) | 
						
							| 31 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐹 ‘ 𝐴 )  ∈  ran  𝐹 ) | 
						
							| 32 | 11 6 31 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ran  𝐹 ) | 
						
							| 33 |  | inelcm | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  𝑈  ∧  ( 𝐹 ‘ 𝐴 )  ∈  ran  𝐹 )  →  ( 𝑈  ∩  ran  𝐹 )  ≠  ∅ ) | 
						
							| 34 | 7 32 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ∩  ran  𝐹 )  ≠  ∅ ) | 
						
							| 35 | 8 12 30 4 34 5 | connsubclo | ⊢ ( 𝜑  →  ran  𝐹  ⊆  𝑈 ) | 
						
							| 36 |  | df-f | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑈  ↔  ( 𝐹  Fn  𝑋  ∧  ran  𝐹  ⊆  𝑈 ) ) | 
						
							| 37 | 11 35 36 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑈 ) |