Step |
Hyp |
Ref |
Expression |
1 |
|
conncn.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
conncn.j |
⊢ ( 𝜑 → 𝐽 ∈ Conn ) |
3 |
|
conncn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
conncn.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐾 ) |
5 |
|
conncn.c |
⊢ ( 𝜑 → 𝑈 ∈ ( Clsd ‘ 𝐾 ) ) |
6 |
|
conncn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
7 |
|
conncn.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) |
8 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
9 |
1 8
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
11 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
12 |
10
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐾 ) |
13 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
14 |
11 13
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
15 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
17 |
8
|
restuni |
⊢ ( ( 𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾 ) → ran 𝐹 = ∪ ( 𝐾 ↾t ran 𝐹 ) ) |
18 |
16 12 17
|
syl2anc |
⊢ ( 𝜑 → ran 𝐹 = ∪ ( 𝐾 ↾t ran 𝐹 ) ) |
19 |
|
foeq3 |
⊢ ( ran 𝐹 = ∪ ( 𝐾 ↾t ran 𝐹 ) → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ) ) |
21 |
14 20
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ) |
22 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
23 |
16 22
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
24 |
|
ssidd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ran 𝐹 ) |
25 |
|
cnrest2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) |
26 |
23 24 12 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) |
27 |
3 26
|
mpbid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) |
28 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t ran 𝐹 ) = ∪ ( 𝐾 ↾t ran 𝐹 ) |
29 |
28
|
cnconn |
⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) → ( 𝐾 ↾t ran 𝐹 ) ∈ Conn ) |
30 |
2 21 27 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ↾t ran 𝐹 ) ∈ Conn ) |
31 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
32 |
11 6 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
33 |
|
inelcm |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) → ( 𝑈 ∩ ran 𝐹 ) ≠ ∅ ) |
34 |
7 32 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ∩ ran 𝐹 ) ≠ ∅ ) |
35 |
8 12 30 4 34 5
|
connsubclo |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑈 ) |
36 |
|
df-f |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑈 ↔ ( 𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈 ) ) |
37 |
11 35 36
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑈 ) |