| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conncomp.2 |
⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
| 2 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 |
| 4 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 ↔ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 ) |
| 5 |
3 4
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 |
| 6 |
1 5
|
eqsstri |
⊢ 𝑆 ⊆ 𝑋 |
| 7 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 9 |
6 8
|
sseqtrid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 10 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 11 |
10
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 12 |
2 9 11
|
syl2an2r |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 13 |
12 8
|
sseqtrrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 14 |
10
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 15 |
2 9 14
|
syl2an2r |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 16 |
1
|
conncompid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |
| 17 |
15 16
|
sseldd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 18 |
|
simpl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 |
6
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 20 |
1
|
conncompconn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 21 |
|
clsconn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ ( 𝐽 ↾t 𝑆 ) ∈ Conn ) → ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Conn ) |
| 22 |
18 19 20 21
|
syl3anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Conn ) |
| 23 |
1
|
conncompss |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Conn ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 24 |
13 17 22 23
|
syl3anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 25 |
10
|
iscld4 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 26 |
2 9 25
|
syl2an2r |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 27 |
24 26
|
mpbird |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |