| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conncomp.2 | ⊢ 𝑆  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 3 | 2 | snssd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 4 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 5 | 4 | elpw | ⊢ ( { 𝐴 }  ∈  𝒫  𝑋  ↔  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 6 | 3 5 | sylibr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  { 𝐴 }  ∈  𝒫  𝑋 ) | 
						
							| 7 |  | snidg | ⊢ ( 𝐴  ∈  𝑋  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 9 |  | restsn2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐽  ↾t  { 𝐴 } )  =  𝒫  { 𝐴 } ) | 
						
							| 10 |  | pwsn | ⊢ 𝒫  { 𝐴 }  =  { ∅ ,  { 𝐴 } } | 
						
							| 11 |  | indisconn | ⊢ { ∅ ,  { 𝐴 } }  ∈  Conn | 
						
							| 12 | 10 11 | eqeltri | ⊢ 𝒫  { 𝐴 }  ∈  Conn | 
						
							| 13 | 9 12 | eqeltrdi | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐽  ↾t  { 𝐴 } )  ∈  Conn ) | 
						
							| 14 | 8 13 | jca | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  { 𝐴 }  ∧  ( 𝐽  ↾t  { 𝐴 } )  ∈  Conn ) ) | 
						
							| 15 |  | eleq2 | ⊢ ( 𝑥  =  { 𝐴 }  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  { 𝐴 } ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑥  =  { 𝐴 }  →  ( 𝐽  ↾t  𝑥 )  =  ( 𝐽  ↾t  { 𝐴 } ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑥  =  { 𝐴 }  →  ( ( 𝐽  ↾t  𝑥 )  ∈  Conn  ↔  ( 𝐽  ↾t  { 𝐴 } )  ∈  Conn ) ) | 
						
							| 18 | 15 17 | anbi12d | ⊢ ( 𝑥  =  { 𝐴 }  →  ( ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn )  ↔  ( 𝐴  ∈  { 𝐴 }  ∧  ( 𝐽  ↾t  { 𝐴 } )  ∈  Conn ) ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑥  =  { 𝐴 }  →  ( ( 𝐴  ∈  𝑥  ∧  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) )  ↔  ( 𝐴  ∈  { 𝐴 }  ∧  ( 𝐴  ∈  { 𝐴 }  ∧  ( 𝐽  ↾t  { 𝐴 } )  ∈  Conn ) ) ) ) | 
						
							| 20 | 19 | rspcev | ⊢ ( ( { 𝐴 }  ∈  𝒫  𝑋  ∧  ( 𝐴  ∈  { 𝐴 }  ∧  ( 𝐴  ∈  { 𝐴 }  ∧  ( 𝐽  ↾t  { 𝐴 } )  ∈  Conn ) ) )  →  ∃ 𝑥  ∈  𝒫  𝑋 ( 𝐴  ∈  𝑥  ∧  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) ) ) | 
						
							| 21 | 6 8 14 20 | syl12anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑥  ∈  𝒫  𝑋 ( 𝐴  ∈  𝑥  ∧  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) ) ) | 
						
							| 22 |  | elunirab | ⊢ ( 𝐴  ∈  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ↔  ∃ 𝑥  ∈  𝒫  𝑋 ( 𝐴  ∈  𝑥  ∧  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) ) ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } ) | 
						
							| 24 | 23 1 | eleqtrrdi | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑆 ) |