Step |
Hyp |
Ref |
Expression |
1 |
|
conncomp.2 |
⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
2 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
3 |
2
|
snssd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ⊆ 𝑋 ) |
4 |
|
snex |
⊢ { 𝐴 } ∈ V |
5 |
4
|
elpw |
⊢ ( { 𝐴 } ∈ 𝒫 𝑋 ↔ { 𝐴 } ⊆ 𝑋 ) |
6 |
3 5
|
sylibr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ∈ 𝒫 𝑋 ) |
7 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 } ) |
8 |
7
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ { 𝐴 } ) |
9 |
|
restsn2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) |
10 |
|
pwsn |
⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } |
11 |
|
indisconn |
⊢ { ∅ , { 𝐴 } } ∈ Conn |
12 |
10 11
|
eqeltri |
⊢ 𝒫 { 𝐴 } ∈ Conn |
13 |
9 12
|
eqeltrdi |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) |
14 |
8 13
|
jca |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) |
15 |
|
eleq2 |
⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = { 𝐴 } → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t { 𝐴 } ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑥 = { 𝐴 } → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑥 = { 𝐴 } → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) ) |
19 |
15 18
|
anbi12d |
⊢ ( 𝑥 = { 𝐴 } → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ↔ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) ) ) |
20 |
19
|
rspcev |
⊢ ( ( { 𝐴 } ∈ 𝒫 𝑋 ∧ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ) |
21 |
6 8 14 20
|
syl12anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ) |
22 |
|
elunirab |
⊢ ( 𝐴 ∈ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
24 |
23 1
|
eleqtrrdi |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |