Step |
Hyp |
Ref |
Expression |
1 |
|
conncomp.2 |
⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
2 |
|
simp1 |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ 𝑋 ) |
3 |
|
conntop |
⊢ ( ( 𝐽 ↾t 𝑇 ) ∈ Conn → ( 𝐽 ↾t 𝑇 ) ∈ Top ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → ( 𝐽 ↾t 𝑇 ) ∈ Top ) |
5 |
|
restrcl |
⊢ ( ( 𝐽 ↾t 𝑇 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝑇 ∈ V ) ) |
6 |
5
|
simprd |
⊢ ( ( 𝐽 ↾t 𝑇 ) ∈ Top → 𝑇 ∈ V ) |
7 |
|
elpwg |
⊢ ( 𝑇 ∈ V → ( 𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋 ) ) |
8 |
4 6 7
|
3syl |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → ( 𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋 ) ) |
9 |
2 8
|
mpbird |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ∈ 𝒫 𝑋 ) |
10 |
|
3simpc |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → ( 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) |
11 |
|
eleq2 |
⊢ ( 𝑦 = 𝑇 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑇 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑦 = 𝑇 → ( 𝐽 ↾t 𝑦 ) = ( 𝐽 ↾t 𝑇 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑦 = 𝑇 → ( ( 𝐽 ↾t 𝑦 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) |
14 |
11 13
|
anbi12d |
⊢ ( 𝑦 = 𝑇 → ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) ) |
15 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t 𝑦 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
19 |
18
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } = { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) } |
20 |
14 19
|
elrab2 |
⊢ ( 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ↔ ( 𝑇 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) ) |
21 |
9 10 20
|
sylanbrc |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
22 |
|
elssuni |
⊢ ( 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } → 𝑇 ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
24 |
23 1
|
sseqtrrdi |
⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ 𝑆 ) |