Metamath Proof Explorer


Theorem conncompss

Description: The connected component containing A is a superset of any other connected set containing A . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 𝑆 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) }
Assertion conncompss ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → 𝑇𝑆 )

Proof

Step Hyp Ref Expression
1 conncomp.2 𝑆 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) }
2 simp1 ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → 𝑇𝑋 )
3 conntop ( ( 𝐽t 𝑇 ) ∈ Conn → ( 𝐽t 𝑇 ) ∈ Top )
4 3 3ad2ant3 ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → ( 𝐽t 𝑇 ) ∈ Top )
5 restrcl ( ( 𝐽t 𝑇 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝑇 ∈ V ) )
6 5 simprd ( ( 𝐽t 𝑇 ) ∈ Top → 𝑇 ∈ V )
7 elpwg ( 𝑇 ∈ V → ( 𝑇 ∈ 𝒫 𝑋𝑇𝑋 ) )
8 4 6 7 3syl ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → ( 𝑇 ∈ 𝒫 𝑋𝑇𝑋 ) )
9 2 8 mpbird ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → 𝑇 ∈ 𝒫 𝑋 )
10 3simpc ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → ( 𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) )
11 eleq2 ( 𝑦 = 𝑇 → ( 𝐴𝑦𝐴𝑇 ) )
12 oveq2 ( 𝑦 = 𝑇 → ( 𝐽t 𝑦 ) = ( 𝐽t 𝑇 ) )
13 12 eleq1d ( 𝑦 = 𝑇 → ( ( 𝐽t 𝑦 ) ∈ Conn ↔ ( 𝐽t 𝑇 ) ∈ Conn ) )
14 11 13 anbi12d ( 𝑦 = 𝑇 → ( ( 𝐴𝑦 ∧ ( 𝐽t 𝑦 ) ∈ Conn ) ↔ ( 𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) ) )
15 eleq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
16 oveq2 ( 𝑥 = 𝑦 → ( 𝐽t 𝑥 ) = ( 𝐽t 𝑦 ) )
17 16 eleq1d ( 𝑥 = 𝑦 → ( ( 𝐽t 𝑥 ) ∈ Conn ↔ ( 𝐽t 𝑦 ) ∈ Conn ) )
18 15 17 anbi12d ( 𝑥 = 𝑦 → ( ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) ↔ ( 𝐴𝑦 ∧ ( 𝐽t 𝑦 ) ∈ Conn ) ) )
19 18 cbvrabv { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } = { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑦 ∧ ( 𝐽t 𝑦 ) ∈ Conn ) }
20 14 19 elrab2 ( 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } ↔ ( 𝑇 ∈ 𝒫 𝑋 ∧ ( 𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) ) )
21 9 10 20 sylanbrc ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
22 elssuni ( 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } → 𝑇 { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
23 21 22 syl ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → 𝑇 { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
24 23 1 sseqtrrdi ( ( 𝑇𝑋𝐴𝑇 ∧ ( 𝐽t 𝑇 ) ∈ Conn ) → 𝑇𝑆 )