Step |
Hyp |
Ref |
Expression |
1 |
|
isconn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
connclo.1 |
⊢ ( 𝜑 → 𝐽 ∈ Conn ) |
3 |
|
connclo.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
4 |
|
connclo.3 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
5 |
|
conndisj.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) |
6 |
|
conndisj.5 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
7 |
|
conndisj.6 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
8 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
10 |
9 1
|
sseqtrrdi |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
11 |
|
uneqdifeq |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) = 𝑋 ↔ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) ) |
12 |
10 7 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) = 𝑋 ↔ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐴 ) = 𝐵 ) |
14 |
13
|
difeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ 𝐵 ) ) |
15 |
|
dfss4 |
⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
16 |
10 15
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐽 ∈ Conn ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ∈ 𝐽 ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ≠ ∅ ) |
21 |
1
|
isconn |
⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
22 |
21
|
simplbi |
⊢ ( 𝐽 ∈ Conn → 𝐽 ∈ Top ) |
23 |
2 22
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
24 |
1
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
25 |
23 3 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
27 |
13 26
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
28 |
1 18 19 20 27
|
connclo |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 = 𝑋 ) |
29 |
28
|
difeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐵 ) = ( 𝑋 ∖ 𝑋 ) ) |
30 |
|
difid |
⊢ ( 𝑋 ∖ 𝑋 ) = ∅ |
31 |
29 30
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐵 ) = ∅ ) |
32 |
14 17 31
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐴 = ∅ ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( ( 𝑋 ∖ 𝐴 ) = 𝐵 → 𝐴 = ∅ ) ) |
34 |
12 33
|
sylbid |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) = 𝑋 → 𝐴 = ∅ ) ) |
35 |
34
|
necon3d |
⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐴 ∪ 𝐵 ) ≠ 𝑋 ) ) |
36 |
4 35
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ≠ 𝑋 ) |