| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conngrv2edg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | conngrv2edg.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  1  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  𝑁  ∈  𝑉 ) | 
						
							| 6 |  | hashgt12el2 | ⊢ ( ( 𝑉  ∈  V  ∧  1  <  ( ♯ ‘ 𝑉 )  ∧  𝑁  ∈  𝑉 )  →  ∃ 𝑣  ∈  𝑉 𝑁  ≠  𝑣 ) | 
						
							| 7 | 3 4 5 6 | mp3an2i | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑣  ∈  𝑉 𝑁  ≠  𝑣 ) | 
						
							| 8 | 1 | isconngr | ⊢ ( 𝐺  ∈  ConnGraph  →  ( 𝐺  ∈  ConnGraph  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑎  =  𝑁  →  ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 )  =  ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) ) | 
						
							| 10 | 9 | breqd | ⊢ ( 𝑎  =  𝑁  →  ( 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  ↔  𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) | 
						
							| 11 | 10 | 2exbidv | ⊢ ( 𝑎  =  𝑁  →  ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  ↔  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑏  =  𝑣  →  ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 )  =  ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) ) | 
						
							| 13 | 12 | breqd | ⊢ ( 𝑏  =  𝑣  →  ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  ↔  𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) | 
						
							| 14 | 13 | 2exbidv | ⊢ ( 𝑏  =  𝑣  →  ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  ↔  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) | 
						
							| 15 | 11 14 | rspc2v | ⊢ ( ( 𝑁  ∈  𝑉  ∧  𝑣  ∈  𝑉 )  →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) | 
						
							| 16 | 15 | ad2ant2r | ⊢ ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) | 
						
							| 17 |  | pthontrlon | ⊢ ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝  →  𝑓 ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) | 
						
							| 18 |  | trlsonwlkon | ⊢ ( 𝑓 ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑣 ) 𝑝  →  𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) ) )  →  𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  𝑁  ≠  𝑣 ) | 
						
							| 21 |  | wlkon2n0 | ⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  𝑁  ≠  𝑣 )  →  ( ♯ ‘ 𝑓 )  ≠  0 ) | 
						
							| 22 | 20 21 | sylan2 | ⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) ) )  →  ( ♯ ‘ 𝑓 )  ≠  0 ) | 
						
							| 23 | 19 22 | jca | ⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) ) )  →  ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  ≠  0 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  →  ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  ≠  0 ) ) ) | 
						
							| 25 | 17 18 24 | 3syl | ⊢ ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝  →  ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  ≠  0 ) ) ) | 
						
							| 26 | 2 | wlkonl1iedg | ⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  ≠  0 )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) | 
						
							| 27 | 25 26 | syl6com | ⊢ ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) | 
						
							| 28 | 27 | exlimdvv | ⊢ ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) | 
						
							| 29 | 16 28 | syldc | ⊢ ( ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝  →  ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) | 
						
							| 30 | 8 29 | biimtrdi | ⊢ ( 𝐺  ∈  ConnGraph  →  ( 𝐺  ∈  ConnGraph  →  ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) ) | 
						
							| 31 | 30 | pm2.43i | ⊢ ( 𝐺  ∈  ConnGraph  →  ( ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  ∧  ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 ) )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) | 
						
							| 32 | 31 | expd | ⊢ ( 𝐺  ∈  ConnGraph  →  ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) ) | 
						
							| 33 | 32 | 3impib | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( 𝑣  ∈  𝑉  ∧  𝑁  ≠  𝑣 )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) | 
						
							| 34 | 33 | expd | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( 𝑣  ∈  𝑉  →  ( 𝑁  ≠  𝑣  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) ) | 
						
							| 35 | 34 | rexlimdv | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ∃ 𝑣  ∈  𝑉 𝑁  ≠  𝑣  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) ) | 
						
							| 36 | 7 35 | mpd | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑒  ∈  ran  𝐼 𝑁  ∈  𝑒 ) |