| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmph | ⊢ ( 𝐽  ≃  𝐾  ↔  ( 𝐽 Homeo 𝐾 )  ≠  ∅ ) | 
						
							| 2 |  | n0 | ⊢ ( ( 𝐽 Homeo 𝐾 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝐽 Homeo 𝐾 ) ) | 
						
							| 3 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 4 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 5 | 3 4 | hmeof1o | ⊢ ( 𝑓  ∈  ( 𝐽 Homeo 𝐾 )  →  𝑓 : ∪  𝐽 –1-1-onto→ ∪  𝐾 ) | 
						
							| 6 |  | f1ofo | ⊢ ( 𝑓 : ∪  𝐽 –1-1-onto→ ∪  𝐾  →  𝑓 : ∪  𝐽 –onto→ ∪  𝐾 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑓  ∈  ( 𝐽 Homeo 𝐾 )  →  𝑓 : ∪  𝐽 –onto→ ∪  𝐾 ) | 
						
							| 8 |  | hmeocn | ⊢ ( 𝑓  ∈  ( 𝐽 Homeo 𝐾 )  →  𝑓  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 9 | 4 | cnconn | ⊢ ( ( 𝐽  ∈  Conn  ∧  𝑓 : ∪  𝐽 –onto→ ∪  𝐾  ∧  𝑓  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  Conn ) | 
						
							| 10 | 9 | 3expb | ⊢ ( ( 𝐽  ∈  Conn  ∧  ( 𝑓 : ∪  𝐽 –onto→ ∪  𝐾  ∧  𝑓  ∈  ( 𝐽  Cn  𝐾 ) ) )  →  𝐾  ∈  Conn ) | 
						
							| 11 | 10 | expcom | ⊢ ( ( 𝑓 : ∪  𝐽 –onto→ ∪  𝐾  ∧  𝑓  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐽  ∈  Conn  →  𝐾  ∈  Conn ) ) | 
						
							| 12 | 7 8 11 | syl2anc | ⊢ ( 𝑓  ∈  ( 𝐽 Homeo 𝐾 )  →  ( 𝐽  ∈  Conn  →  𝐾  ∈  Conn ) ) | 
						
							| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑓 𝑓  ∈  ( 𝐽 Homeo 𝐾 )  →  ( 𝐽  ∈  Conn  →  𝐾  ∈  Conn ) ) | 
						
							| 14 | 2 13 | sylbi | ⊢ ( ( 𝐽 Homeo 𝐾 )  ≠  ∅  →  ( 𝐽  ∈  Conn  →  𝐾  ∈  Conn ) ) | 
						
							| 15 | 1 14 | sylbi | ⊢ ( 𝐽  ≃  𝐾  →  ( 𝐽  ∈  Conn  →  𝐾  ∈  Conn ) ) |