Step |
Hyp |
Ref |
Expression |
1 |
|
hmph |
⊢ ( 𝐽 ≃ 𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ ) |
2 |
|
n0 |
⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
5 |
3 4
|
hmeof1o |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
6 |
|
f1ofo |
⊢ ( 𝑓 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
7 |
5 6
|
syl |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
8 |
|
hmeocn |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) |
9 |
4
|
cnconn |
⊢ ( ( 𝐽 ∈ Conn ∧ 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Conn ) |
10 |
9
|
3expb |
⊢ ( ( 𝐽 ∈ Conn ∧ ( 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝐾 ∈ Conn ) |
11 |
10
|
expcom |
⊢ ( ( 𝑓 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
12 |
7 8 11
|
syl2anc |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
13 |
12
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
14 |
2 13
|
sylbi |
⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |
15 |
1 14
|
sylbi |
⊢ ( 𝐽 ≃ 𝐾 → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) ) |