Metamath Proof Explorer


Theorem connhmph

Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009)

Ref Expression
Assertion connhmph ( 𝐽𝐾 → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) )

Proof

Step Hyp Ref Expression
1 hmph ( 𝐽𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ )
2 n0 ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) )
3 eqid 𝐽 = 𝐽
4 eqid 𝐾 = 𝐾
5 3 4 hmeof1o ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : 𝐽1-1-onto 𝐾 )
6 f1ofo ( 𝑓 : 𝐽1-1-onto 𝐾𝑓 : 𝐽onto 𝐾 )
7 5 6 syl ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : 𝐽onto 𝐾 )
8 hmeocn ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) )
9 4 cnconn ( ( 𝐽 ∈ Conn ∧ 𝑓 : 𝐽onto 𝐾𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Conn )
10 9 3expb ( ( 𝐽 ∈ Conn ∧ ( 𝑓 : 𝐽onto 𝐾𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝐾 ∈ Conn )
11 10 expcom ( ( 𝑓 : 𝐽onto 𝐾𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) )
12 7 8 11 syl2anc ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) )
13 12 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) )
14 2 13 sylbi ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) )
15 1 14 sylbi ( 𝐽𝐾 → ( 𝐽 ∈ Conn → 𝐾 ∈ Conn ) )