Metamath Proof Explorer


Theorem connima

Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses connima.x 𝑋 = 𝐽
connima.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
connima.a ( 𝜑𝐴𝑋 )
connima.c ( 𝜑 → ( 𝐽t 𝐴 ) ∈ Conn )
Assertion connima ( 𝜑 → ( 𝐾t ( 𝐹𝐴 ) ) ∈ Conn )

Proof

Step Hyp Ref Expression
1 connima.x 𝑋 = 𝐽
2 connima.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 connima.a ( 𝜑𝐴𝑋 )
4 connima.c ( 𝜑 → ( 𝐽t 𝐴 ) ∈ Conn )
5 eqid 𝐾 = 𝐾
6 1 5 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 𝐾 )
7 2 6 syl ( 𝜑𝐹 : 𝑋 𝐾 )
8 7 ffund ( 𝜑 → Fun 𝐹 )
9 7 fdmd ( 𝜑 → dom 𝐹 = 𝑋 )
10 3 9 sseqtrrd ( 𝜑𝐴 ⊆ dom 𝐹 )
11 fores ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) )
12 8 10 11 syl2anc ( 𝜑 → ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) )
13 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
14 2 13 syl ( 𝜑𝐾 ∈ Top )
15 imassrn ( 𝐹𝐴 ) ⊆ ran 𝐹
16 7 frnd ( 𝜑 → ran 𝐹 𝐾 )
17 15 16 sstrid ( 𝜑 → ( 𝐹𝐴 ) ⊆ 𝐾 )
18 5 restuni ( ( 𝐾 ∈ Top ∧ ( 𝐹𝐴 ) ⊆ 𝐾 ) → ( 𝐹𝐴 ) = ( 𝐾t ( 𝐹𝐴 ) ) )
19 14 17 18 syl2anc ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐾t ( 𝐹𝐴 ) ) )
20 foeq3 ( ( 𝐹𝐴 ) = ( 𝐾t ( 𝐹𝐴 ) ) → ( ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : 𝐴onto ( 𝐾t ( 𝐹𝐴 ) ) ) )
21 19 20 syl ( 𝜑 → ( ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : 𝐴onto ( 𝐾t ( 𝐹𝐴 ) ) ) )
22 12 21 mpbid ( 𝜑 → ( 𝐹𝐴 ) : 𝐴onto ( 𝐾t ( 𝐹𝐴 ) ) )
23 1 cnrest ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) )
24 2 3 23 syl2anc ( 𝜑 → ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) )
25 toptopon2 ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
26 14 25 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ 𝐾 ) )
27 df-ima ( 𝐹𝐴 ) = ran ( 𝐹𝐴 )
28 eqimss2 ( ( 𝐹𝐴 ) = ran ( 𝐹𝐴 ) → ran ( 𝐹𝐴 ) ⊆ ( 𝐹𝐴 ) )
29 27 28 mp1i ( 𝜑 → ran ( 𝐹𝐴 ) ⊆ ( 𝐹𝐴 ) )
30 cnrest2 ( ( 𝐾 ∈ ( TopOn ‘ 𝐾 ) ∧ ran ( 𝐹𝐴 ) ⊆ ( 𝐹𝐴 ) ∧ ( 𝐹𝐴 ) ⊆ 𝐾 ) → ( ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn ( 𝐾t ( 𝐹𝐴 ) ) ) ) )
31 26 29 17 30 syl3anc ( 𝜑 → ( ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn ( 𝐾t ( 𝐹𝐴 ) ) ) ) )
32 24 31 mpbid ( 𝜑 → ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn ( 𝐾t ( 𝐹𝐴 ) ) ) )
33 eqid ( 𝐾t ( 𝐹𝐴 ) ) = ( 𝐾t ( 𝐹𝐴 ) )
34 33 cnconn ( ( ( 𝐽t 𝐴 ) ∈ Conn ∧ ( 𝐹𝐴 ) : 𝐴onto ( 𝐾t ( 𝐹𝐴 ) ) ∧ ( 𝐹𝐴 ) ∈ ( ( 𝐽t 𝐴 ) Cn ( 𝐾t ( 𝐹𝐴 ) ) ) ) → ( 𝐾t ( 𝐹𝐴 ) ) ∈ Conn )
35 4 22 32 34 syl3anc ( 𝜑 → ( 𝐾t ( 𝐹𝐴 ) ) ∈ Conn )