| Step | Hyp | Ref | Expression | 
						
							| 1 |  | connima.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | connima.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 3 |  | connima.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) | 
						
							| 4 |  | connima.c | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 6 | 1 5 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 8 | 7 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 9 | 7 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑋 ) | 
						
							| 10 | 3 9 | sseqtrrd | ⊢ ( 𝜑  →  𝐴  ⊆  dom  𝐹 ) | 
						
							| 11 |  | fores | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 13 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 14 | 2 13 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 15 |  | imassrn | ⊢ ( 𝐹  “  𝐴 )  ⊆  ran  𝐹 | 
						
							| 16 | 7 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ∪  𝐾 ) | 
						
							| 17 | 15 16 | sstrid | ⊢ ( 𝜑  →  ( 𝐹  “  𝐴 )  ⊆  ∪  𝐾 ) | 
						
							| 18 | 5 | restuni | ⊢ ( ( 𝐾  ∈  Top  ∧  ( 𝐹  “  𝐴 )  ⊆  ∪  𝐾 )  →  ( 𝐹  “  𝐴 )  =  ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 19 | 14 17 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  “  𝐴 )  =  ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 20 |  | foeq3 | ⊢ ( ( 𝐹  “  𝐴 )  =  ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) )  →  ( ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 22 | 12 21 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 23 | 1 | cnrest | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 ) ) | 
						
							| 24 | 2 3 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 ) ) | 
						
							| 25 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 26 | 14 25 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 27 |  | df-ima | ⊢ ( 𝐹  “  𝐴 )  =  ran  ( 𝐹  ↾  𝐴 ) | 
						
							| 28 |  | eqimss2 | ⊢ ( ( 𝐹  “  𝐴 )  =  ran  ( 𝐹  ↾  𝐴 )  →  ran  ( 𝐹  ↾  𝐴 )  ⊆  ( 𝐹  “  𝐴 ) ) | 
						
							| 29 | 27 28 | mp1i | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  𝐴 )  ⊆  ( 𝐹  “  𝐴 ) ) | 
						
							| 30 |  | cnrest2 | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  ran  ( 𝐹  ↾  𝐴 )  ⊆  ( 𝐹  “  𝐴 )  ∧  ( 𝐹  “  𝐴 )  ⊆  ∪  𝐾 )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 )  ↔  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) ) ) | 
						
							| 31 | 26 29 17 30 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 )  ↔  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) ) ) | 
						
							| 32 | 24 31 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 33 |  | eqid | ⊢ ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) )  =  ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) | 
						
							| 34 | 33 | cnconn | ⊢ ( ( ( 𝐽  ↾t  𝐴 )  ∈  Conn  ∧  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ∪  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) )  ∧  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) ) ) )  →  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) )  ∈  Conn ) | 
						
							| 35 | 4 22 32 34 | syl3anc | ⊢ ( 𝜑  →  ( 𝐾  ↾t  ( 𝐹  “  𝐴 ) )  ∈  Conn ) |