Step |
Hyp |
Ref |
Expression |
1 |
|
connima.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
connima.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
connima.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
4 |
|
connima.c |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
6 |
1 5
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
8 |
7
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
9 |
7
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
10 |
3 9
|
sseqtrrd |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
11 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
13 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
15 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
16 |
7
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐾 ) |
17 |
15 16
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) |
18 |
5
|
restuni |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( 𝐹 “ 𝐴 ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) |
19 |
14 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) |
20 |
|
foeq3 |
⊢ ( ( 𝐹 “ 𝐴 ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) |
22 |
12 21
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) |
23 |
1
|
cnrest |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
24 |
2 3 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
25 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
26 |
14 25
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
27 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
28 |
|
eqimss2 |
⊢ ( ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) → ran ( 𝐹 ↾ 𝐴 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
29 |
27 28
|
mp1i |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐴 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
30 |
|
cnrest2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran ( 𝐹 ↾ 𝐴 ) ⊆ ( 𝐹 “ 𝐴 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) ) |
31 |
26 29 17 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) ) |
32 |
24 31
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) |
33 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) |
34 |
33
|
cnconn |
⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∧ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Conn ) |
35 |
4 22 32 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Conn ) |