| Step | Hyp | Ref | Expression | 
						
							| 1 |  | connsubclo.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | connsubclo.3 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) | 
						
							| 3 |  | connsubclo.4 | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) | 
						
							| 4 |  | connsubclo.5 | ⊢ ( 𝜑  →  𝐵  ∈  𝐽 ) | 
						
							| 5 |  | connsubclo.6 | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 6 |  | connsubclo.7 | ⊢ ( 𝜑  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 7 |  | eqid | ⊢ ∪  ( 𝐽  ↾t  𝐴 )  =  ∪  ( 𝐽  ↾t  𝐴 ) | 
						
							| 8 |  | cldrcl | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 10 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐽 ) | 
						
							| 12 | 11 2 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 13 |  | elrestr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  V  ∧  𝐵  ∈  𝐽 )  →  ( 𝐵  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 14 | 9 12 4 13 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 𝐵  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) | 
						
							| 16 |  | ineq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 17 | 16 | rspceeqv | ⊢ ( ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐵  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) )  →  ∃ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( 𝐵  ∩  𝐴 )  =  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 18 | 6 15 17 | sylancl | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( 𝐵  ∩  𝐴 )  =  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 19 | 1 | restcld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐵  ∩  𝐴 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  ↔  ∃ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( 𝐵  ∩  𝐴 )  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 20 | 9 2 19 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  ∩  𝐴 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) )  ↔  ∃ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( 𝐵  ∩  𝐴 )  =  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) ) ) | 
						
							| 22 | 7 3 14 5 21 | connclo | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  =  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 23 | 1 | restuni | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  𝐴  =  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 24 | 9 2 23 | syl2anc | ⊢ ( 𝜑  →  𝐴  =  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 25 | 22 24 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 26 |  | sseqin2 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 27 | 25 26 | sylibr | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) |