Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
2 |
|
orc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
3 |
2
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
4 |
|
olc |
⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
5 |
4
|
adantrl |
⊢ ( ( ¬ 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
6 |
3 5
|
pm2.61ian |
⊢ ( ( 𝜓 ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
7 |
1 6
|
jaoi |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
8 |
|
orc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) → ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
9 |
7 8
|
impbii |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |