Metamath Proof Explorer


Theorem constcncfg

Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses constcncfg.a ( 𝜑𝐴 ⊆ ℂ )
constcncfg.b ( 𝜑𝐵𝐶 )
constcncfg.c ( 𝜑𝐶 ⊆ ℂ )
Assertion constcncfg ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn𝐶 ) )

Proof

Step Hyp Ref Expression
1 constcncfg.a ( 𝜑𝐴 ⊆ ℂ )
2 constcncfg.b ( 𝜑𝐵𝐶 )
3 constcncfg.c ( 𝜑𝐶 ⊆ ℂ )
4 cncfmptc ( ( 𝐵𝐶𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ ) → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn𝐶 ) )
5 2 1 3 4 syl3anc ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn𝐶 ) )