Metamath Proof Explorer
Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
constcncfg.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
|
|
constcncfg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
|
|
constcncfg.c |
⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
|
Assertion |
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
constcncfg.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
constcncfg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
3 |
|
constcncfg.c |
⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
4 |
|
cncfmptc |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
5 |
2 1 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |