Step |
Hyp |
Ref |
Expression |
1 |
|
constlimc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
constlimc.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
constlimc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
4 |
|
constlimc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
1rp |
⊢ 1 ∈ ℝ+ |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 1 ∈ ℝ+ ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ 𝐴 ) |
8 |
|
vex |
⊢ 𝑣 ∈ V |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
10 |
|
csbtt |
⊢ ( ( 𝑣 ∈ V ∧ Ⅎ 𝑥 𝐵 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
11 |
8 9 10
|
mp2an |
⊢ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 = 𝐵 |
12 |
11 3
|
eqeltrid |
⊢ ( 𝜑 → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
14 |
1
|
fvmpts |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ 𝑣 ) = ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) |
15 |
7 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) = ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) = ( ⦋ 𝑣 / 𝑥 ⦌ 𝐵 − 𝐵 ) ) |
17 |
11
|
oveq1i |
⊢ ( ⦋ 𝑣 / 𝑥 ⦌ 𝐵 − 𝐵 ) = ( 𝐵 − 𝐵 ) |
18 |
16 17
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐵 ) ) ) |
20 |
3
|
subidd |
⊢ ( 𝜑 → ( 𝐵 − 𝐵 ) = 0 ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐵 ) ) = ( abs ‘ 0 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) = ( abs ‘ 0 ) ) |
23 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ 0 ) = 0 ) |
25 |
19 22 24
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) = 0 ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) = 0 ) |
27 |
|
rpgt0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → 0 < 𝑦 ) |
29 |
26 28
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) |
30 |
29
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
31 |
30
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
32 |
|
brimralrspcev |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
33 |
6 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
35 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
36 |
35 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
37 |
36 2 4
|
ellimc3 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐹 limℂ 𝐶 ) ↔ ( 𝐵 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) ) ) |
38 |
3 34 37
|
mpbir2and |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 limℂ 𝐶 ) ) |