Description:
The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions and links therein.
Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:
Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva ( cbval in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf .
Here is a non-exhaustive list of common suffixes:
The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.
Abbreviation | Mnenomic | Source | Expression | Syntax? | Example(s) |
---|---|---|---|---|---|
a | and (suffix) | No | biimpa , rexlimiva | ||
abl | Abelian group | df-abl | Abel | Yes | ablgrp , zringabl |
abs | absorption | No | ressabs | ||
abs | absolute value (of a complex number) | df-abs | ( absA ) | Yes | absval , absneg , abs1 |
ad | adding | No | adantr , ad2antlr | ||
add | add (see "p") | df-add | ( A + B ) | Yes | addcl , addcom , addass |
al | "for all" | A. x ph | No | alim , alex | |
ALT | alternative/less preferred (suffix) | No | idALT | ||
an | and | df-an | ( ph /\ ps ) | Yes | anor , iman , imnan |
ant | antecedent | No | adantr | ||
ass | associative | No | biass , orass , mulass | ||
asym | asymmetric, antisymmetric | No | intasym , asymref , posasymb | ||
ax | axiom | No | ax6dgen , ax1cn | ||
bas, base | base (set of an extensible structure) | df-base | ( BaseS ) | Yes | baseval , ressbas , cnfldbas |
b, bi | biconditional ("iff", "if and only if") | df-bi | ( ph <-> ps ) | Yes | impbid , sspwb |
br | binary relation | df-br | A R B | Yes | brab1 , brun |
cbv | change bound variable | No | cbvalivw , cbvrex | ||
cl | closure | No | ifclda , ovrcl , zaddcl | ||
cn | complex numbers | df-c | CC | Yes | nnsscn , nncn |
cnfld | field of complex numbers | df-cnfld | CCfld | Yes | cnfldbas , cnfldinv |
cntz | centralizer | df-cntz | ( CntzM ) | Yes | cntzfval , dprdfcntz |
cnv | converse | df-cnv | ` ``' A | Yes | opelcnvg , f1ocnv |
co | composition | df-co | ( A o. B ) | Yes | cnvco , fmptco |
com | commutative | No | orcom , bicomi , eqcomi | ||
con | contradiction, contraposition | No | condan , con2d | ||
csb | class substitution | df-csb | [_ A / x ]_ B | Yes | csbid , csbie2g |
cyg | cyclic group | df-cyg | CycGrp | Yes | iscyg , zringcyg |
d | deduction form (suffix) | No | idd , impbid | ||
df | (alternate) definition (prefix) | No | dfrel2 , dffn2 | ||
di, distr | distributive | No | andi , imdi , ordi , difindi , ndmovdistr | ||
dif | class difference | df-dif | ( A \ B ) | Yes | difss , difindi |
div | division | df-div | ( A / B ) | Yes | divcl , divval , divmul |
dm | domain | df-dm | dom A | Yes | dmmpt , iswrddm0 |
e, eq, equ | equals (equ for setvars, eq for classes) | df-cleq | A = B | Yes | 2p2e4 , uneqri , equtr |
edg | edge | df-edg | ( Edg `G ) | Yes | edgopval , usgredgppr |
el | element of | A e. B | Yes | eldif , eldifsn , elssuni | |
en | equinumerous | df-en | A ~B | Yes | domen , enfi |
eu | "there exists exactly one" | eu6 | E! x ph | Yes | euex , euabsn |
ex | exists (i.e. is a set) | e.V | No | brrelex1 , 0ex | |
ex, e | "there exists (at least one)" | df-ex | E. x ph | Yes | exim , alex |
exp | export | No | expt , expcom | ||
f | "not free in" (suffix) | No | equs45f , sbf | ||
f | function | df-f | F : A --> B | Yes | fssxp , opelf |
fal | false | df-fal | F. | Yes | bifal , falantru |
fi | finite intersection | df-fi | ( fiB ) | Yes | fival , inelfi |
fi, fin | finite | df-fin | Fin | Yes | isfi , snfi , onfin |
fld | field (Note: there is an alternative definition Fld of a field, see df-fld ) | df-field | Field | Yes | isfld , fldidom |
fn | function with domain | df-fn | A Fn B | Yes | ffn , fndm |
frgp | free group | df-frgp | ( freeGrpI ) | Yes | frgpval , frgpadd |
fsupp | finitely supported function | df-fsupp | R finSupp Z | Yes | isfsupp , fdmfisuppfi , fsuppco |
fun | function | df-fun | Fun F | Yes | funrel , ffun |
fv | function value | df-fv | ( FA ) | Yes | fvres , swrdfv |
fz | finite set of sequential integers | df-fz | ( M ... N ) | Yes | fzval , eluzfz |
fz0 | finite set of sequential nonnegative integers | ( 0 ... N ) | Yes | nn0fz0 , fz0tp | |
fzo | half-open integer range | df-fzo | ( M ..^ N ) | Yes | elfzo , elfzofz |
g | more general (suffix); eliminates "is a set" hypotheses | No | uniexg | ||
gr | graph | No | uhgrf , isumgr , usgrres1 | ||
grp | group | df-grp | Grp | Yes | isgrp , tgpgrp |
gsum | group sum | df-gsum | ( G gsum F ) | Yes | gsumval , gsumwrev |
hash | size (of a set) | df-hash | ( #A ) | Yes | hashgval , hashfz1 , hashcl |
hb | hypothesis builder (prefix) | No | hbxfrbi , hbald , hbequid | ||
hm | (monoid, group, ring) homomorphism | No | ismhm , isghm , isrhm | ||
i | inference (suffix) | No | eleq1i , tcsni | ||
i | implication (suffix) | No | brwdomi , infeq5i | ||
id | identity | No | biid | ||
iedg | indexed edge | df-iedg | ( iEdgG ) | Yes | iedgval0 , edgiedgb |
idm | idempotent | No | anidm , tpidm13 | ||
im, imp | implication (label often omitted) | df-im | ( A -> B ) | Yes | iman , imnan , impbidd |
ima | image | df-ima | ( A " B ) | Yes | resima , imaundi |
imp | import | No | biimpa , impcom | ||
in | intersection | df-in | ( A i^i B ) | Yes | elin , incom |
inf | infimum | df-inf | inf ( RR+ , RR* , < ) | Yes | fiinfcl , infiso |
is... | is (something a) ...? | No | isring | ||
j | joining, disjoining | No | jc , jaoi | ||
l | left | No | olcd , simpl | ||
map | mapping operation or set exponentiation | df-map | ( A ^m B ) | Yes | mapvalg , elmapex |
mat | matrix | df-mat | ( N Mat R ) | Yes | matval , matring |
mdet | determinant (of a square matrix) | df-mdet | ( N maDet R ) | Yes | mdetleib , mdetrlin |
mgm | magma | df-mgm | Magma | Yes | mgmidmo , mgmlrid , ismgm |
mgp | multiplicative group | df-mgp | ( mulGrpR ) | Yes | mgpress , ringmgp |
mnd | monoid | df-mnd | Mnd | Yes | mndass , mndodcong |
mo | "there exists at most one" | df-mo | E* x ph | Yes | eumo , moim |
mp | modus ponens | ax-mp | No | mpd , mpi | |
mpo | maps-to notation for an operation | df-mpo | ( x e. A , y e. B |-> C ) | Yes | mpompt , resmpo |
mpt | modus ponendo tollens | No | mptnan , mptxor | ||
mpt | maps-to notation for a function | df-mpt | ( x e. A |-> B ) | Yes | fconstmpt , resmpt |
mpt2 | maps-to notation for an operation (deprecated). We are in the process of replacing mpt2 with mpo in labels. | df-mpo | ( x e. A , y e. B |-> C ) | Yes | mpompt , resmpo |
mul | multiplication (see "t") | df-mul | ( A x. B ) | Yes | mulcl , divmul , mulcom , mulass |
n, not | not | -. ph | Yes | nan , notnotr | |
ne | not equal | df-ne | A =/= B | Yes | exmidne , neeqtrd |
nel | not element of | df-nel | A e/ B | Yes | neli , nnel |
ne0 | not equal to zero (see n0) | =/= 0 | No | negne0d , ine0 , gt0ne0 | |
nf | "not free in" (prefix) | No | nfnd | ||
ngp | normed group | df-ngp | NrmGrp | Yes | isngp , ngptps |
nm | norm (on a group or ring) | df-nm | ( normW ) | Yes | nmval , subgnm |
nn | positive integers | df-nn | NN | Yes | nnsscn , nncn |
nn0 | nonnegative integers | df-n0 | NN0 | Yes | nnnn0 , nn0cn |
n0 | not the empty set (see ne0) | =/= (/) | No | n0i , vn0 , ssn0 | |
OLD | old, obsolete (to be removed soon) | No | 19.43OLD | ||
on | ordinal number | df-on | A e. On | Yes | elon , 1on onelon |
op | ordered pair | df-op | <. A , B >. | Yes | dfopif , opth |
or | or | df-or | ( ph \/ ps ) | Yes | orcom , anor |
ot | ordered triple | df-ot | <. A , B , C >. | Yes | euotd , fnotovb |
ov | operation value | df-ov | ( A F B ) | Yes | fnotovb , fnovrn |
p | plus (see "add"), for all-constant theorems | df-add | ( 3 + 2 ) = 5 | Yes | 3p2e5 |
pfx | prefix | df-pfx | ( W prefix L ) | Yes | pfxlen , ccatpfx |
pm | Principia Mathematica | No | pm2.27 | ||
pm | partial mapping (operation) | df-pm | ( A ^pm B ) | Yes | elpmi , pmsspw |
pr | pair | df-pr | { A , B } | Yes | elpr , prcom , prid1g , prnz |
prm, prime | prime (number) | df-prm | Prime | Yes | 1nprm , dvdsprime |
pss | proper subset | df-pss | A C. B | Yes | pssss , sspsstri |
q | rational numbers ("quotients") | df-q | Yes | elq | |
r | right | No | orcd , simprl | ||
rab | restricted class abstraction | df-rab | { x e. A | ph } | Yes | rabswap , df-oprab |
ral | restricted universal quantification | df-ral | A. x e. A ph | Yes | ralnex , ralrnmpo |
rcl | reverse closure | No | ndmfvrcl , nnarcl | ||
re | real numbers | df-r | RR | Yes | recn , 0re |
rel | relation | df-rel | Rel A | Yes | brrelex1 , relmpoopab |
res | restriction | df-res | ` ( A |`B ) | Yes | opelres , f1ores |
reu | restricted existential uniqueness | df-reu | E! x e. A ph | Yes | nfreud , reurex |
rex | restricted existential quantification | df-rex | E. x e. A ph | Yes | rexnal , rexrnmpo |
rmo | restricted "at most one" | df-rmo | E* x e. A ph | Yes | nfrmod , nrexrmo |
rn | range | df-rn | ran A | Yes | elrng , rncnvcnv |
rng | (unital) ring | df-ring | Ring | Yes | ringidval , isring , ringgrp |
rot | rotation | No | 3anrot , 3orrot | ||
s | eliminates need for syllogism (suffix) | No | ancoms | ||
sb | (proper) substitution (of a set) | df-sb | [ y / x ] ph | Yes | spsbe , sbimi |
sbc | (proper) substitution of a class | df-sbc | [. A / x ]. ph | Yes | sbc2or , sbcth |
sca | scalar | df-sca | ( ScalarH ) | Yes | resssca , mgpsca |
simp | simple, simplification | No | simpl , simp3r3 | ||
sn | singleton | df-sn | { A } | Yes | eldifsn |
sp | specialization | No | spsbe , spei | ||
ss | subset | df-ss | A C B | Yes | difss |
struct | structure | df-struct | Struct | Yes | brstruct , structfn |
sub | subtract | df-sub | ( A - B ) | Yes | subval , subaddi |
sup | supremum | df-sup | sup ( A , B , < ) | Yes | fisupcl , supmo |
supp | support (of a function) | df-supp | ( F supp Z ) | Yes | ressuppfi , mptsuppd |
swap | swap (two parts within a theorem) | No | rabswap , 2reuswap | ||
syl | syllogism | syl | No | 3syl | |
sym | symmetric | No | df-symdif , cnvsym | ||
symg | symmetric group | df-symg | ( SymGrpA ) | Yes | symghash , pgrpsubgsymg |
t | times (see "mul"), for all-constant theorems | df-mul | ( 3 x. 2 ) = 6 | Yes | 3t2e6 |
th, t | theorem | No | nfth , sbcth , weth , ancomst | ||
tp | triple | df-tp | { A , B , C } | Yes | eltpi , tpeq1 |
tr | transitive | No | bitrd , biantr | ||
tru, t | true, truth | df-tru | T. | Yes | bitru , truanfal , biimt |
un | union | df-un | ( A u. B ) | Yes | uneqri , uncom |
unit | unit (in a ring) | df-unit | ( UnitR ) | Yes | isunit , nzrunit |
v | setvar (especially for specializations of theorems when a class is replaced by a setvar variable) | x | Yes | cv , vex , velpw , vtoclf | |
v | disjoint variable condition used in place of nonfreeness hypothesis (suffix) | No | spimv | ||
vtx | vertex | df-vtx | ( VtxG ) | Yes | vtxval0 , opvtxov |
vv | two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) | No | 19.23vv | ||
w | weak (version of a theorem) (suffix) | No | ax11w , spnfw | ||
wrd | word | df-word | Word S | Yes | iswrdb , wrdfn , ffz0iswrd |
xp | cross product (Cartesian product) | df-xp | ( A X. B ) | Yes | elxp , opelxpi , xpundi |
xr | eXtended reals | df-xr | RR* | Yes | ressxr , rexr , 0xr |
z | integers (from German "Zahlen") | df-z | ZZ | Yes | elz , zcn |
zn | ring of integers mod N | df-zn | ( Z/nZN ) | Yes | znval , zncrng , znhash |
zring | ring of integers | df-zring | ZZring | Yes | zringbas , zringcrng |
0, z | slashed zero (empty set) | df-nul | (/) | Yes | n0i , vn0 ; snnz , prnz |
(Contributed by the Metamath team, 27-Dec-2016) Date of last revision. (Revised by the Metamath team, 22-Sep-2022) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | conventions-labels.1 | ⊢ 𝜑 | |
Assertion | conventions-labels | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conventions-labels.1 | ⊢ 𝜑 |