Step |
Hyp |
Ref |
Expression |
1 |
|
coof.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
coof.g |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
3 |
|
coof.h |
⊢ ( 𝜑 → 𝐻 Fn 𝐵 ) |
4 |
|
coof.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
coof.1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 𝑅 𝑐 ) ∈ 𝐵 ) |
6 |
|
coof.2 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
7 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
8 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) |
9 |
6
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
11 |
|
fvoveq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ‘ 𝑏 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
14 |
11 13
|
eqeq12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
20 |
14 19
|
rspc2va |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
21 |
7 8 10 20
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
22 |
21
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
23 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
24 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
25 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
27 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
28 |
23 24 4 4 25 26 27
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
29 |
28
|
coeq2d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( 𝐻 ∘ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
30 |
|
dffn3 |
⊢ ( 𝐻 Fn 𝐵 ↔ 𝐻 : 𝐵 ⟶ ran 𝐻 ) |
31 |
3 30
|
sylib |
⊢ ( 𝜑 → 𝐻 : 𝐵 ⟶ ran 𝐻 ) |
32 |
7 8
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) ) |
33 |
5
|
caovclg |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐵 ) |
34 |
32 33
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐵 ) |
35 |
31 34
|
cofmpt |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
36 |
29 35
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
37 |
|
fnfco |
⊢ ( ( 𝐻 Fn 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ) |
38 |
3 1 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ) |
39 |
|
fnfco |
⊢ ( ( 𝐻 Fn 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 ∘ 𝐺 ) Fn 𝐴 ) |
40 |
3 2 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) Fn 𝐴 ) |
41 |
|
fvco2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
42 |
23 41
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
43 |
|
fvco2 |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
44 |
24 43
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
45 |
38 40 4 4 25 42 44
|
offval |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ∘f 𝑆 ( 𝐻 ∘ 𝐺 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
46 |
22 36 45
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f 𝑆 ( 𝐻 ∘ 𝐺 ) ) ) |