| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coof.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | coof.g | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 |  | coof.h | ⊢ ( 𝜑  →  𝐻  Fn  𝐵 ) | 
						
							| 4 |  | coof.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | coof.1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐵 ) )  →  ( 𝑏 𝑅 𝑐 )  ∈  𝐵 ) | 
						
							| 6 |  | coof.2 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐵 ) )  →  ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | 
						
							| 7 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 9 | 6 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | 
						
							| 11 |  | fvoveq1 | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) )  =  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝐻 ‘ 𝑏 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) )  ↔  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑐  =  ( 𝐺 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 )  =  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑐  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) )  =  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑐  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝐻 ‘ 𝑐 )  =  ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑐  =  ( 𝐺 ‘ 𝑥 )  →  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 19 | 16 18 | eqeq12d | ⊢ ( 𝑐  =  ( 𝐺 ‘ 𝑥 )  →  ( ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) )  ↔  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 20 | 14 19 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐵 )  ∧  ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) )  =  ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) )  →  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 21 | 7 8 10 20 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 22 | 21 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 23 | 1 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 24 | 2 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐴 ) | 
						
							| 25 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 26 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 27 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 28 | 23 24 4 4 25 26 27 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 𝐺 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 28 | coeq2d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  ∘f  𝑅 𝐺 ) )  =  ( 𝐻  ∘  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 30 |  | dffn3 | ⊢ ( 𝐻  Fn  𝐵  ↔  𝐻 : 𝐵 ⟶ ran  𝐻 ) | 
						
							| 31 | 3 30 | sylib | ⊢ ( 𝜑  →  𝐻 : 𝐵 ⟶ ran  𝐻 ) | 
						
							| 32 | 7 8 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 33 | 5 | caovclg | ⊢ ( ( 𝜑  ∧  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) )  ∈  𝐵 ) | 
						
							| 34 | 32 33 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) )  ∈  𝐵 ) | 
						
							| 35 | 31 34 | cofmpt | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 36 | 29 35 | eqtrd | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  ∘f  𝑅 𝐺 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 37 |  | fnfco | ⊢ ( ( 𝐻  Fn  𝐵  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐻  ∘  𝐹 )  Fn  𝐴 ) | 
						
							| 38 | 3 1 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  Fn  𝐴 ) | 
						
							| 39 |  | fnfco | ⊢ ( ( 𝐻  Fn  𝐵  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐻  ∘  𝐺 )  Fn  𝐴 ) | 
						
							| 40 | 3 2 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐺 )  Fn  𝐴 ) | 
						
							| 41 |  | fvco2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 | 23 41 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 43 |  | fvco2 | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝐺 ) ‘ 𝑥 )  =  ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 44 | 24 43 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝐺 ) ‘ 𝑥 )  =  ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 45 | 38 40 4 4 25 42 44 | offval | ⊢ ( 𝜑  →  ( ( 𝐻  ∘  𝐹 )  ∘f  𝑆 ( 𝐻  ∘  𝐺 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 46 | 22 36 45 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  ∘f  𝑅 𝐺 ) )  =  ( ( 𝐻  ∘  𝐹 )  ∘f  𝑆 ( 𝐻  ∘  𝐺 ) ) ) |