Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
2 |
|
nn0z |
⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℤ ) |
3 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
7 |
6
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 gcd 𝐶 ) ∈ ℂ ) |
8 |
7
|
sqvald |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) ) |
9 |
|
simp13 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐶 ∈ ℕ0 ) |
10 |
9
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐶 ∈ ℂ ) |
11 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℂ ) |
14 |
10 13
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 · 𝐴 ) = ( 𝐴 · 𝐶 ) ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐶 ∈ ℕ0 ) |
16 |
15
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐶 ∈ ℂ ) |
17 |
16
|
sqvald |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( 𝐶 ↑ 2 ) = ( 𝐶 · 𝐶 ) ) |
18 |
17
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ↔ ( 𝐶 · 𝐶 ) = ( 𝐴 · 𝐵 ) ) ) |
19 |
18
|
biimp3a |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 · 𝐶 ) = ( 𝐴 · 𝐵 ) ) |
20 |
14 19
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐶 ) ) = ( ( 𝐴 · 𝐶 ) gcd ( 𝐴 · 𝐵 ) ) ) |
21 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℕ0 ) |
22 |
21
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℤ ) |
23 |
9
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐶 ∈ ℤ ) |
24 |
|
mulgcd |
⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐶 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) |
25 |
9 22 23 24
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐶 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) |
26 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℤ ) |
27 |
|
mulgcd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) |
28 |
21 23 26 27
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) |
29 |
20 25 28
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) = ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) = ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) ) |
31 |
|
mulgcdr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) = ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) ) |
32 |
22 23 6 31
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) = ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) ) |
33 |
6
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 gcd 𝐶 ) ∈ ℤ ) |
34 |
|
gcdcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
35 |
2 34
|
sylan |
⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
36 |
35
|
ancoms |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
37 |
36
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
39 |
38
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 gcd 𝐵 ) ∈ ℤ ) |
40 |
|
mulgcd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐴 gcd 𝐶 ) ∈ ℤ ∧ ( 𝐶 gcd 𝐵 ) ∈ ℤ ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
41 |
21 33 39 40
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
42 |
30 32 41
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) = ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
43 |
2
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℤ ) |
44 |
|
gcdid |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 gcd 𝐶 ) = ( abs ‘ 𝐶 ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐶 ) = ( abs ‘ 𝐶 ) ) |
46 |
45
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( ( abs ‘ 𝐶 ) gcd 𝐵 ) ) |
47 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
48 |
|
gcdabs1 |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd 𝐵 ) ) |
49 |
43 47 48
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd 𝐵 ) ) |
50 |
46 49
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd 𝐵 ) ) |
51 |
|
gcdass |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) |
52 |
43 43 47 51
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) |
53 |
43 47
|
gcdcomd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) = ( 𝐵 gcd 𝐶 ) ) |
54 |
50 52 53
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) = ( 𝐵 gcd 𝐶 ) ) |
55 |
54
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) |
56 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
57 |
37
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) ∈ ℤ ) |
58 |
|
gcdass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝐵 ) ∈ ℤ ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = ( 𝐴 gcd ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
59 |
56 43 57 58
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = ( 𝐴 gcd ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
60 |
|
gcdass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) |
61 |
56 47 43 60
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) |
62 |
55 59 61
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) ) |
63 |
62
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = 1 ↔ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) ) |
64 |
63
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = 1 ) |
65 |
64
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
66 |
65
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
67 |
13
|
mulid1d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
68 |
66 67
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) = 𝐴 ) |
69 |
8 42 68
|
3eqtrrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) |
70 |
69
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) ) |