Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
2 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
3 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
7 |
6
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ↔ ( 𝐶 ↑ 2 ) = ( 𝐵 · 𝐴 ) ) ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐵 ∈ ℕ0 ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐴 ∈ ℤ ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐶 ∈ ℕ0 ) |
11 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
12 |
|
gcdcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) ) |
14 |
13
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ↔ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) ) |
15 |
11 14
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ↔ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ↔ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) ) |
17 |
16
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) |
18 |
|
coprimeprodsq |
⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐵 · 𝐴 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |
19 |
8 9 10 17 18
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐵 · 𝐴 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |
20 |
7 19
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |