Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
2 |
|
gcddvds |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ∧ ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ∧ ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ) ) |
4 |
3
|
simprd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ) |
5 |
|
breq1 |
⊢ ( ( 𝑃 gcd 𝑁 ) = 𝑃 → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) |
6 |
4 5
|
syl5ibcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) = 𝑃 → 𝑃 ∥ 𝑁 ) ) |
7 |
6
|
con3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 → ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) |
8 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
9 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
10 |
|
eleq1 |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℕ ↔ 0 ∈ ℕ ) ) |
11 |
9 10
|
syl5ibcom |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 0 → 0 ∈ ℕ ) ) |
12 |
8 11
|
mtoi |
⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 = 0 ) |
13 |
12
|
intnanrd |
⊢ ( 𝑃 ∈ ℙ → ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) |
15 |
|
gcdn0cl |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) |
16 |
15
|
ex |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) ) |
17 |
1 16
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) ) |
18 |
14 17
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) |
19 |
3
|
simpld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ) |
20 |
|
isprm2 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
21 |
20
|
simprbi |
⊢ ( 𝑃 ∈ ℙ → ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
22 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ) ) |
23 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( 𝑧 = 1 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
24 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( 𝑧 = 𝑃 ↔ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) |
25 |
23 24
|
orbi12d |
⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) |
26 |
22 25
|
imbi12d |
⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
27 |
26
|
rspcv |
⊢ ( ( 𝑃 gcd 𝑁 ) ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
28 |
21 27
|
syl5com |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 gcd 𝑁 ) ∈ ℕ → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) ∈ ℕ → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
30 |
18 19 29
|
mp2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) |
31 |
|
biorf |
⊢ ( ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ↔ ( ( 𝑃 gcd 𝑁 ) = 𝑃 ∨ ( 𝑃 gcd 𝑁 ) = 1 ) ) ) |
32 |
|
orcom |
⊢ ( ( ( 𝑃 gcd 𝑁 ) = 𝑃 ∨ ( 𝑃 gcd 𝑁 ) = 1 ) ↔ ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) |
33 |
31 32
|
bitrdi |
⊢ ( ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ↔ ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) |
34 |
30 33
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 → ( 𝑃 gcd 𝑁 ) = 1 ) ) |
35 |
7 34
|
syld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 → ( 𝑃 gcd 𝑁 ) = 1 ) ) |
36 |
|
iddvds |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) |
37 |
1 36
|
syl |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∥ 𝑃 ) |
38 |
37
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 𝑃 ∥ 𝑃 ) |
39 |
|
dvdslegcd |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) |
40 |
39
|
ex |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) ) |
41 |
40
|
3anidm12 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) ) |
42 |
1 41
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) ) |
43 |
14 42
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) |
44 |
38 43
|
mpand |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) |
45 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
46 |
45
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 1 < 𝑃 ) |
47 |
|
1re |
⊢ 1 ∈ ℝ |
48 |
1
|
zred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
49 |
18
|
nnred |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∈ ℝ ) |
50 |
|
ltletr |
⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 𝑃 gcd 𝑁 ) ∈ ℝ ) → ( ( 1 < 𝑃 ∧ 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) → 1 < ( 𝑃 gcd 𝑁 ) ) ) |
51 |
47 48 49 50
|
mp3an2ani |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 1 < 𝑃 ∧ 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) → 1 < ( 𝑃 gcd 𝑁 ) ) ) |
52 |
46 51
|
mpand |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ≤ ( 𝑃 gcd 𝑁 ) → 1 < ( 𝑃 gcd 𝑁 ) ) ) |
53 |
|
ltne |
⊢ ( ( 1 ∈ ℝ ∧ 1 < ( 𝑃 gcd 𝑁 ) ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) |
54 |
47 53
|
mpan |
⊢ ( 1 < ( 𝑃 gcd 𝑁 ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) |
55 |
54
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 1 < ( 𝑃 gcd 𝑁 ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) ) |
56 |
44 52 55
|
3syld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 → ( 𝑃 gcd 𝑁 ) ≠ 1 ) ) |
57 |
56
|
necon2bd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) = 1 → ¬ 𝑃 ∥ 𝑁 ) ) |
58 |
35 57
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |