Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ℕ ↔ ∅ ⊆ ℕ ) ) |
2 |
1
|
3anbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
3 |
|
raleq |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
4 |
|
difeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∖ { 𝑚 } ) = ( ∅ ∖ { 𝑚 } ) ) |
5 |
4
|
raleqdv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
7 |
2 3 6
|
3anbi123d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
8 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
11 |
7 10
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
12 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ ) ) |
13 |
12
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
14 |
|
raleq |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
15 |
|
difeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑦 ∖ { 𝑚 } ) ) |
16 |
15
|
raleqdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
17 |
16
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
18 |
13 14 17
|
3anbi123d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
19 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
23 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ ℕ ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) ) |
24 |
23
|
3anbi1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
25 |
|
raleq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
26 |
|
difeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∖ { 𝑚 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
27 |
26
|
raleqdv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
28 |
27
|
raleqbi1dv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
29 |
24 25 28
|
3anbi123d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
30 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
33 |
29 32
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
34 |
|
sseq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ ) ) |
35 |
34
|
3anbi1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
36 |
|
raleq |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
37 |
|
difeq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑀 ∖ { 𝑚 } ) ) |
38 |
37
|
raleqdv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
39 |
38
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
40 |
35 36 39
|
3anbi123d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
41 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑀 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ) |
42 |
41
|
oveq1d |
⊢ ( 𝑥 = 𝑀 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑥 = 𝑀 → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
44 |
40 43
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
45 |
|
prod0 |
⊢ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 |
46 |
45
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 ) |
47 |
46
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 1 gcd 𝑁 ) ) |
48 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
49 |
|
1gcd |
⊢ ( 𝑁 ∈ ℤ → ( 1 gcd 𝑁 ) = 1 ) |
50 |
48 49
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 gcd 𝑁 ) = 1 ) |
51 |
47 50
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
52 |
51
|
3ad2ant2 |
⊢ ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
53 |
52
|
3ad2ant1 |
⊢ ( ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
54 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
55 |
|
nfcv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑧 ) |
56 |
|
simprl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
57 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) |
58 |
|
vex |
⊢ 𝑧 ∈ V |
59 |
58
|
snss |
⊢ ( 𝑧 ∈ ℕ ↔ { 𝑧 } ⊆ ℕ ) |
60 |
59
|
biimpri |
⊢ ( { 𝑧 } ⊆ ℕ → 𝑧 ∈ ℕ ) |
61 |
60
|
adantl |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
62 |
57 61
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑧 ∈ ℕ ) |
63 |
62
|
3ad2ant1 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑧 ∈ ℕ ) |
64 |
63
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ ℕ ) |
65 |
|
simprr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
66 |
|
simpll3 |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) |
67 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑦 ⊆ ℕ ) |
68 |
57 67
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) |
69 |
68
|
3ad2ant1 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑦 ⊆ ℕ ) |
70 |
69
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ ℕ ) |
71 |
70
|
sselda |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
72 |
66 71
|
ffvelrnd |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
73 |
72
|
nncnd |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
74 |
|
fveq2 |
⊢ ( 𝑚 = 𝑧 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑧 ) ) |
75 |
|
simpr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝐹 : ℕ ⟶ ℕ ) |
76 |
62
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑧 ∈ ℕ ) |
77 |
75 76
|
ffvelrnd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
78 |
77
|
3adant2 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
79 |
78
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
80 |
79
|
nncnd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
81 |
54 55 56 64 65 73 74 80
|
fprodsplitsn |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
82 |
81
|
oveq1d |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) gcd 𝑁 ) ) |
83 |
56 72
|
fprodnncl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
84 |
83
|
nnzd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ) |
85 |
79
|
nnzd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
86 |
84 85
|
zmulcld |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
87 |
48
|
3ad2ant2 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑁 ∈ ℤ ) |
88 |
87
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑁 ∈ ℤ ) |
89 |
86 88
|
gcdcomd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
90 |
82 89
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
91 |
90
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
92 |
91
|
3ad2ant1 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
93 |
92
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
95 |
94
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
96 |
|
simpl2 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑁 ∈ ℕ ) |
97 |
96 83 79
|
3jca |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
98 |
97
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
99 |
98
|
3ad2ant1 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
100 |
99
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
101 |
100
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
102 |
101
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
103 |
88 84
|
gcdcomd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
104 |
103
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
105 |
104
|
3ad2ant1 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
106 |
105
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
108 |
107
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
109 |
68
|
a1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) ) |
110 |
|
idd |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) ) |
111 |
|
idd |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐹 : ℕ ⟶ ℕ → 𝐹 : ℕ ⟶ ℕ ) ) |
112 |
109 110 111
|
3anim123d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
113 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
114 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
115 |
113 114
|
mp1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
116 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
117 |
113 116
|
mp1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
118 |
113
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
119 |
118
|
ssdifd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑚 } ) ⊆ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
120 |
|
ssralv |
⊢ ( ( 𝑦 ∖ { 𝑚 } ) ⊆ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
121 |
119 120
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
122 |
121
|
ralimdva |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
123 |
117 122
|
syld |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
124 |
112 115 123
|
3anim123d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
125 |
124
|
imim1d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
126 |
125
|
imp31 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
127 |
108 126
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = 1 ) |
128 |
|
rpmulgcd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = 1 ) → ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) ) |
129 |
102 127 128
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) ) |
130 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
131 |
130
|
olci |
⊢ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) |
132 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) |
133 |
131 132
|
mpbir |
⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
134 |
74
|
oveq1d |
⊢ ( 𝑚 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
135 |
134
|
eqeq1d |
⊢ ( 𝑚 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
136 |
135
|
rspcv |
⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
137 |
133 136
|
mp1i |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
138 |
137
|
imp |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) |
139 |
78
|
nnzd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
140 |
87 139
|
gcdcomd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
141 |
140
|
eqeq1d |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
142 |
141
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
143 |
138 142
|
mpbird |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
144 |
143
|
3adant3 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
145 |
144
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
146 |
95 129 145
|
3eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
147 |
146
|
exp31 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
148 |
11 22 33 44 53 147
|
findcard2s |
⊢ ( 𝑀 ∈ Fin → ( ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
149 |
148
|
3expd |
⊢ ( 𝑀 ∈ Fin → ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) |
150 |
149
|
3expd |
⊢ ( 𝑀 ∈ Fin → ( 𝑀 ⊆ ℕ → ( 𝑁 ∈ ℕ → ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) ) ) |
151 |
150
|
3imp |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) |
152 |
151
|
3imp |
⊢ ( ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |