Step |
Hyp |
Ref |
Expression |
1 |
|
cleq1lem |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) |
2 |
|
difeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∖ { 𝑚 } ) = ( ∅ ∖ { 𝑚 } ) ) |
3 |
2
|
raleqdv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
4 |
3
|
raleqbi1dv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
5 |
|
raleq |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
7 |
1 6
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
8 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
11 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) |
12 |
|
difeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑦 ∖ { 𝑚 } ) ) |
13 |
12
|
raleqdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
14 |
13
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
15 |
|
raleq |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
16 |
14 15
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
17 |
11 16
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
18 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) |
19 |
18
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
21 |
|
cleq1lem |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) |
22 |
|
difeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∖ { 𝑚 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
23 |
22
|
raleqdv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
24 |
23
|
raleqbi1dv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
25 |
|
raleq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
27 |
21 26
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
28 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ) |
29 |
28
|
breq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
30 |
27 29
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
31 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) |
32 |
|
difeq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑀 ∖ { 𝑚 } ) ) |
33 |
32
|
raleqdv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
34 |
33
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
35 |
|
raleq |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
36 |
34 35
|
anbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
37 |
31 36
|
anbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
38 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑀 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ) |
39 |
38
|
breq1d |
⊢ ( 𝑥 = 𝑀 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
40 |
37 39
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
41 |
|
prod0 |
⊢ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 |
42 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
43 |
|
1dvds |
⊢ ( 𝐾 ∈ ℤ → 1 ∥ 𝐾 ) |
44 |
42 43
|
syl |
⊢ ( 𝐾 ∈ ℕ → 1 ∥ 𝐾 ) |
45 |
41 44
|
eqbrtrid |
⊢ ( 𝐾 ∈ ℕ → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
46 |
45
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
48 |
|
coprmproddvdslem |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
49 |
10 20 30 40 47 48
|
findcard2s |
⊢ ( 𝑀 ∈ Fin → ( ( ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
50 |
49
|
exp4c |
⊢ ( 𝑀 ∈ Fin → ( 𝑀 ⊆ ℕ → ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
51 |
50
|
impcom |
⊢ ( ( 𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin ) → ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
52 |
51
|
3imp |
⊢ ( ( ( 𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |