Metamath Proof Explorer


Theorem coprmproddvdslem

Description: Lemma for coprmproddvds : Induction step. (Contributed by AV, 19-Aug-2020)

Ref Expression
Assertion coprmproddvdslem ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑚 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) )
2 nfcv 𝑚 ( 𝐹𝑧 )
3 simpll ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ∈ Fin )
4 unss ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ )
5 vex 𝑧 ∈ V
6 5 snss ( 𝑧 ∈ ℕ ↔ { 𝑧 } ⊆ ℕ )
7 6 biimpri ( { 𝑧 } ⊆ ℕ → 𝑧 ∈ ℕ )
8 7 adantl ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑧 ∈ ℕ )
9 4 8 sylbir ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑧 ∈ ℕ )
10 9 adantr ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝑧 ∈ ℕ )
11 10 adantl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑧 ∈ ℕ )
12 simplr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ¬ 𝑧𝑦 )
13 simprrr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐹 : ℕ ⟶ ℕ )
14 13 adantr ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → 𝐹 : ℕ ⟶ ℕ )
15 simpl ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑦 ⊆ ℕ )
16 4 15 sylbir ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ )
17 16 adantr ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝑦 ⊆ ℕ )
18 17 adantl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ⊆ ℕ )
19 18 sselda ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → 𝑚 ∈ ℕ )
20 14 19 ffvelrnd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → ( 𝐹𝑚 ) ∈ ℕ )
21 20 nncnd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → ( 𝐹𝑚 ) ∈ ℂ )
22 fveq2 ( 𝑚 = 𝑧 → ( 𝐹𝑚 ) = ( 𝐹𝑧 ) )
23 13 11 ffvelrnd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹𝑧 ) ∈ ℕ )
24 23 nncnd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹𝑧 ) ∈ ℂ )
25 1 2 3 11 12 21 22 24 fprodsplitsn ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) = ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) · ( 𝐹𝑧 ) ) )
26 25 ad2ant2r ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) = ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) · ( 𝐹𝑧 ) ) )
27 simprl ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → 𝑦 ∈ Fin )
28 simprr ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝐹 : ℕ ⟶ ℕ )
29 28 adantr ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → 𝐹 : ℕ ⟶ ℕ )
30 29 adantr ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) ∧ 𝑚𝑦 ) → 𝐹 : ℕ ⟶ ℕ )
31 17 adantr ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → 𝑦 ⊆ ℕ )
32 31 sselda ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) ∧ 𝑚𝑦 ) → 𝑚 ∈ ℕ )
33 30 32 ffvelrnd ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) ∧ 𝑚𝑦 ) → ( 𝐹𝑚 ) ∈ ℕ )
34 27 33 fprodnncl ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℕ )
35 34 ex ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℕ ) )
36 35 adantr ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℕ ) )
37 36 com12 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℕ ) )
38 37 adantr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℕ ) )
39 38 imp ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℕ )
40 39 nnzd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℤ )
41 28 10 ffvelrnd ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹𝑧 ) ∈ ℕ )
42 41 nnzd ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹𝑧 ) ∈ ℤ )
43 42 adantr ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( 𝐹𝑧 ) ∈ ℤ )
44 43 adantl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ( 𝐹𝑧 ) ∈ ℤ )
45 nnz ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ )
46 45 adantr ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝐾 ∈ ℤ )
47 46 adantl ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝐾 ∈ ℤ )
48 47 adantr ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → 𝐾 ∈ ℤ )
49 48 adantl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → 𝐾 ∈ ℤ )
50 40 44 49 3jca ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℤ ∧ ( 𝐹𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) )
51 simpl ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → 𝐹 : ℕ ⟶ ℕ )
52 9 adantl ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → 𝑧 ∈ ℕ )
53 51 52 ffvelrnd ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → ( 𝐹𝑧 ) ∈ ℕ )
54 53 ex ( 𝐹 : ℕ ⟶ ℕ → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → ( 𝐹𝑧 ) ∈ ℕ ) )
55 54 adantl ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → ( 𝐹𝑧 ) ∈ ℕ ) )
56 55 impcom ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹𝑧 ) ∈ ℕ )
57 56 adantl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹𝑧 ) ∈ ℕ )
58 3 18 57 3jca ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹𝑧 ) ∈ ℕ ) )
59 58 adantr ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹𝑧 ) ∈ ℕ ) )
60 13 adantr ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → 𝐹 : ℕ ⟶ ℕ )
61 vsnid 𝑧 ∈ { 𝑧 }
62 61 olci ( 𝑧𝑦𝑧 ∈ { 𝑧 } )
63 elun ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧𝑦𝑧 ∈ { 𝑧 } ) )
64 62 63 mpbir 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } )
65 64 a1i ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) )
66 snssi ( 𝑚𝑦 → { 𝑚 } ⊆ 𝑦 )
67 66 ssneld ( 𝑚𝑦 → ( ¬ 𝑧𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) )
68 67 com12 ( ¬ 𝑧𝑦 → ( 𝑚𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) )
69 68 adantl ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( 𝑚𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) )
70 69 adantr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑚𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) )
71 70 imp ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → ¬ 𝑧 ∈ { 𝑚 } )
72 65 71 eldifd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) )
73 fveq2 ( 𝑛 = 𝑧 → ( 𝐹𝑛 ) = ( 𝐹𝑧 ) )
74 73 oveq2d ( 𝑛 = 𝑧 → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) )
75 74 eqeq1d ( 𝑛 = 𝑧 → ( ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ↔ ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
76 75 rspcv ( 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
77 72 76 syl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚𝑦 ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
78 77 ralimdva ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑚𝑦 ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
79 ralunb ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ↔ ( ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) )
80 79 simplbi ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
81 78 80 impel ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑚𝑦 ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 )
82 raldifb ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
83 ralunb ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ↔ ( ∀ 𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ∧ ∀ 𝑛 ∈ { 𝑧 } ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ) )
84 raldifb ( ∀ 𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
85 84 biimpi ( ∀ 𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
86 85 adantr ( ( ∀ 𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ∧ ∀ 𝑛 ∈ { 𝑧 } ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
87 83 86 sylbi ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
88 82 87 sylbir ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
89 88 ralimi ( ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
90 89 adantr ( ( ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
91 79 90 sylbi ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
92 91 adantl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
93 coprmprod ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹𝑧 ) ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚𝑦 ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) → ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
94 93 imp ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹𝑧 ) ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚𝑦 ( ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) ∧ ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 )
95 59 60 81 92 94 syl31anc ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 )
96 95 ex ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
97 96 adantrd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
98 97 expimpd ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
99 98 adantr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) )
100 99 imp ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 )
101 83 simplbi ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) )
102 82 101 sylbir ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) )
103 102 ralimi ( ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑚𝑦𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) )
104 103 adantr ( ( ∀ 𝑚𝑦𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) → ∀ 𝑚𝑦𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) )
105 79 104 sylbi ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 → ∀ 𝑚𝑦𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) )
106 ralunb ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ↔ ( ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ∧ ∀ 𝑚 ∈ { 𝑧 } ( 𝐹𝑚 ) ∥ 𝐾 ) )
107 106 simplbi ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 → ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 )
108 84 ralbii ( ∀ 𝑚𝑦𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ↔ ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 )
109 108 anbi1i ( ( ∀ 𝑚𝑦𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
110 17 adantl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ⊆ ℕ )
111 simprrl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐾 ∈ ℕ )
112 simprrr ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐹 : ℕ ⟶ ℕ )
113 110 111 112 jca32 ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) )
114 simplr ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
115 pm2.27 ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
116 113 114 115 syl2anc ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
117 116 exp31 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) )
118 117 com24 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) )
119 118 imp ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) )
120 119 imp ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
121 109 120 syl5bi ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚𝑦𝑛𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ) ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
122 105 107 121 syl2ani ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) )
123 122 impr ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 )
124 22 breq1d ( 𝑚 = 𝑧 → ( ( 𝐹𝑚 ) ∥ 𝐾 ↔ ( 𝐹𝑧 ) ∥ 𝐾 ) )
125 124 rspcv ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 → ( 𝐹𝑧 ) ∥ 𝐾 ) )
126 64 125 ax-mp ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 → ( 𝐹𝑧 ) ∥ 𝐾 )
127 126 adantl ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) → ( 𝐹𝑧 ) ∥ 𝐾 )
128 127 adantl ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ( 𝐹𝑧 ) ∥ 𝐾 )
129 128 adantl ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ( 𝐹𝑧 ) ∥ 𝐾 )
130 coprmdvds2 ( ( ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℤ ∧ ( 𝐹𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) → ( ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ∧ ( 𝐹𝑧 ) ∥ 𝐾 ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) · ( 𝐹𝑧 ) ) ∥ 𝐾 ) )
131 130 imp ( ( ( ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∈ ℤ ∧ ( 𝐹𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) gcd ( 𝐹𝑧 ) ) = 1 ) ∧ ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ∧ ( 𝐹𝑧 ) ∥ 𝐾 ) ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) · ( 𝐹𝑧 ) ) ∥ 𝐾 )
132 50 100 123 129 131 syl22anc ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚𝑦 ( 𝐹𝑚 ) · ( 𝐹𝑧 ) ) ∥ 𝐾 )
133 26 132 eqbrtrd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 )
134 133 exp31 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚𝑦𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚𝑦 ( 𝐹𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹𝑚 ) gcd ( 𝐹𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹𝑚 ) ∥ 𝐾 ) ) )