| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑚 ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) ) | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑧 ) | 
						
							| 3 |  | simpll | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 4 |  | unss | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  { 𝑧 }  ⊆  ℕ )  ↔  ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ ) | 
						
							| 5 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 6 | 5 | snss | ⊢ ( 𝑧  ∈  ℕ  ↔  { 𝑧 }  ⊆  ℕ ) | 
						
							| 7 | 6 | biimpri | ⊢ ( { 𝑧 }  ⊆  ℕ  →  𝑧  ∈  ℕ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  { 𝑧 }  ⊆  ℕ )  →  𝑧  ∈  ℕ ) | 
						
							| 9 | 4 8 | sylbir | ⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  →  𝑧  ∈  ℕ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  𝑧  ∈  ℕ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝑧  ∈  ℕ ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 13 |  | simprrr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  { 𝑧 }  ⊆  ℕ )  →  𝑦  ⊆  ℕ ) | 
						
							| 16 | 4 15 | sylbir | ⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  →  𝑦  ⊆  ℕ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  𝑦  ⊆  ℕ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝑦  ⊆  ℕ ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  𝑚  ∈  ℕ ) | 
						
							| 20 | 14 19 | ffvelcdmd | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 21 | 20 | nncnd | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑚  =  𝑧  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 23 | 13 11 | ffvelcdmd | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 24 | 23 | nncnd | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 25 | 1 2 3 11 12 21 22 24 | fprodsplitsn | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ∏ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  =  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ·  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 26 | 25 | ad2ant2r | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ∏ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  =  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ·  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 27 |  | simprl | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝑦  ∈  Fin ) | 
						
							| 28 |  | simprr | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  ∧  𝑚  ∈  𝑦 )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 31 | 17 | adantr | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝑦  ⊆  ℕ ) | 
						
							| 32 | 31 | sselda | ⊢ ( ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  ∧  𝑚  ∈  𝑦 )  →  𝑚  ∈  ℕ ) | 
						
							| 33 | 30 32 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  ∧  𝑚  ∈  𝑦 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 34 | 27 33 | fprodnncl | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 35 | 34 | ex | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) ) | 
						
							| 37 | 36 | com12 | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 40 | 39 | nnzd | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℤ ) | 
						
							| 41 | 28 10 | ffvelcdmd | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 42 | 41 | nnzd | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 45 |  | nnz | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∈  ℤ ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  →  𝐾  ∈  ℤ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  𝐾  ∈  ℤ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  𝐾  ∈  ℤ ) | 
						
							| 50 | 40 44 49 | 3jca | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℤ  ∧  𝐾  ∈  ℤ ) ) | 
						
							| 51 |  | simpl | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 52 | 9 | adantl | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ )  →  𝑧  ∈  ℕ ) | 
						
							| 53 | 51 52 | ffvelcdmd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝐹 : ℕ ⟶ ℕ  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) ) | 
						
							| 56 | 55 | impcom | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 58 | 3 18 57 | 3jca | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( 𝑦  ∈  Fin  ∧  𝑦  ⊆  ℕ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ( 𝑦  ∈  Fin  ∧  𝑦  ⊆  ℕ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℕ ) ) | 
						
							| 60 | 13 | adantr | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 61 |  | vsnid | ⊢ 𝑧  ∈  { 𝑧 } | 
						
							| 62 | 61 | olci | ⊢ ( 𝑧  ∈  𝑦  ∨  𝑧  ∈  { 𝑧 } ) | 
						
							| 63 |  | elun | ⊢ ( 𝑧  ∈  ( 𝑦  ∪  { 𝑧 } )  ↔  ( 𝑧  ∈  𝑦  ∨  𝑧  ∈  { 𝑧 } ) ) | 
						
							| 64 | 62 63 | mpbir | ⊢ 𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) | 
						
							| 65 | 64 | a1i | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 66 |  | snssi | ⊢ ( 𝑚  ∈  𝑦  →  { 𝑚 }  ⊆  𝑦 ) | 
						
							| 67 | 66 | ssneld | ⊢ ( 𝑚  ∈  𝑦  →  ( ¬  𝑧  ∈  𝑦  →  ¬  𝑧  ∈  { 𝑚 } ) ) | 
						
							| 68 | 67 | com12 | ⊢ ( ¬  𝑧  ∈  𝑦  →  ( 𝑚  ∈  𝑦  →  ¬  𝑧  ∈  { 𝑚 } ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( 𝑚  ∈  𝑦  →  ¬  𝑧  ∈  { 𝑚 } ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( 𝑚  ∈  𝑦  →  ¬  𝑧  ∈  { 𝑚 } ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  ¬  𝑧  ∈  { 𝑚 } ) | 
						
							| 72 | 65 71 | eldifd | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  𝑧  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑛  =  𝑧  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑛  =  𝑧  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 75 | 74 | eqeq1d | ⊢ ( 𝑛  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ↔  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 76 | 75 | rspcv | ⊢ ( 𝑧  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } )  →  ( ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 77 | 72 76 | syl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  𝑚  ∈  𝑦 )  →  ( ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 78 | 77 | ralimdva | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑚  ∈  𝑦 ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 79 |  | ralunb | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ↔  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  { 𝑧 } ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) | 
						
							| 80 | 79 | simplbi | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 81 | 78 80 | impel | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑚  ∈  𝑦 ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) | 
						
							| 82 |  | raldifb | ⊢ ( ∀ 𝑛  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ↔  ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 83 |  | ralunb | ⊢ ( ∀ 𝑛  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ↔  ( ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ∧  ∀ 𝑛  ∈  { 𝑧 } ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) ) | 
						
							| 84 |  | raldifb | ⊢ ( ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ↔  ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 85 | 84 | biimpi | ⊢ ( ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ∧  ∀ 𝑛  ∈  { 𝑧 } ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) )  →  ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 87 | 83 86 | sylbi | ⊢ ( ∀ 𝑛  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 88 | 82 87 | sylbir | ⊢ ( ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 89 | 88 | ralimi | ⊢ ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  { 𝑧 } ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 91 | 79 90 | sylbi | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 93 |  | coprmprod | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  𝑦  ⊆  ℕ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℕ )  ∧  𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  𝑦 ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 )  →  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 94 | 93 | imp | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  𝑦  ⊆  ℕ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℕ )  ∧  𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  𝑦 ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 )  ∧  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) | 
						
							| 95 | 59 60 81 92 94 | syl31anc | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) | 
						
							| 96 | 95 | ex | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 97 | 96 | adantrd | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 98 | 97 | expimpd | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 100 | 99 | imp | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 ) | 
						
							| 101 | 83 | simplbi | ⊢ ( ∀ 𝑛  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) | 
						
							| 102 | 82 101 | sylbir | ⊢ ( ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) | 
						
							| 103 | 102 | ralimi | ⊢ ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  { 𝑧 } ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) | 
						
							| 105 | 79 104 | sylbi | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  →  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) ) | 
						
							| 106 |  | ralunb | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾  ↔  ( ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾  ∧  ∀ 𝑚  ∈  { 𝑧 } ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 107 | 106 | simplbi | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾  →  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) | 
						
							| 108 | 84 | ralbii | ⊢ ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ↔  ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 ) | 
						
							| 109 | 108 | anbi1i | ⊢ ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  ↔  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 110 | 17 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝑦  ⊆  ℕ ) | 
						
							| 111 |  | simprrl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝐾  ∈  ℕ ) | 
						
							| 112 |  | simprrr | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  𝐹 : ℕ ⟶ ℕ ) | 
						
							| 113 | 110 111 112 | jca32 | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) ) | 
						
							| 114 |  | simplr | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 115 |  | pm2.27 | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 116 | 113 114 115 | syl2anc | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 117 | 116 | exp31 | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) ) ) | 
						
							| 118 | 117 | com24 | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) ) ) | 
						
							| 119 | 118 | imp | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  →  ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) ) | 
						
							| 120 | 119 | imp | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 121 | 109 120 | biimtrid | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  𝑦 ( 𝑛  ∉  { 𝑚 }  →  ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1 )  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 122 | 105 107 121 | syl2ani | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) ) )  →  ( ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) | 
						
							| 123 | 122 | impr | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) | 
						
							| 124 | 22 | breq1d | ⊢ ( 𝑚  =  𝑧  →  ( ( 𝐹 ‘ 𝑚 )  ∥  𝐾  ↔  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) ) | 
						
							| 125 | 124 | rspcv | ⊢ ( 𝑧  ∈  ( 𝑦  ∪  { 𝑧 } )  →  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾  →  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) ) | 
						
							| 126 | 64 125 | ax-mp | ⊢ ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾  →  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) | 
						
							| 130 |  | coprmdvds2 | ⊢ ( ( ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℤ  ∧  𝐾  ∈  ℤ )  ∧  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 )  →  ( ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾  ∧  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ·  ( 𝐹 ‘ 𝑧 ) )  ∥  𝐾 ) ) | 
						
							| 131 | 130 | imp | ⊢ ( ( ( ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℤ  ∧  𝐾  ∈  ℤ )  ∧  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑧 ) )  =  1 )  ∧  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾  ∧  ( 𝐹 ‘ 𝑧 )  ∥  𝐾 ) )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ·  ( 𝐹 ‘ 𝑧 ) )  ∥  𝐾 ) | 
						
							| 132 | 50 100 123 129 131 | syl22anc | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ( ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ·  ( 𝐹 ‘ 𝑧 ) )  ∥  𝐾 ) | 
						
							| 133 | 26 132 | eqbrtrd | ⊢ ( ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  ∧  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) )  →  ∏ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) | 
						
							| 134 | 133 | exp31 | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ( ( 𝑦  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  𝑦 ∀ 𝑛  ∈  ( 𝑦  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  𝑦 ( 𝐹 ‘ 𝑚 )  ∥  𝐾 )  →  ( ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  ℕ  ∧  ( 𝐾  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ ) )  ∧  ( ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ∀ 𝑛  ∈  ( ( 𝑦  ∪  { 𝑧 } )  ∖  { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 )  gcd  ( 𝐹 ‘ 𝑛 ) )  =  1  ∧  ∀ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) )  →  ∏ 𝑚  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐹 ‘ 𝑚 )  ∥  𝐾 ) ) ) |