Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | copsex2dv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
copsex2dv.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
copsex2dv.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | copsex2dv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copsex2dv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
2 | copsex2dv.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
3 | copsex2dv.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
4 | 3 | ex | ⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) ) |
5 | 4 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) ) |
6 | copsex2t | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) ) | |
7 | 5 1 2 6 | syl12anc | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) ) |