Metamath Proof Explorer


Theorem copsex2dv

Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses copsex2dv.a ( 𝜑𝐴𝑈 )
copsex2dv.b ( 𝜑𝐵𝑉 )
copsex2dv.1 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion copsex2dv ( 𝜑 → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 copsex2dv.a ( 𝜑𝐴𝑈 )
2 copsex2dv.b ( 𝜑𝐵𝑉 )
3 copsex2dv.1 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
4 3 ex ( 𝜑 → ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) ) )
5 4 alrimivv ( 𝜑 → ∀ 𝑥𝑦 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) ) )
6 copsex2t ( ( ∀ 𝑥𝑦 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) )
7 5 1 2 6 syl12anc ( 𝜑 → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ 𝜒 ) )