Metamath Proof Explorer


Theorem copsex2ga

Description: Implicit substitution inference for ordered pairs. Compare copsex2g . (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
Assertion copsex2ga ( 𝐴 ∈ ( 𝑉 × 𝑊 ) → ( 𝜑 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 copsex2ga.1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
2 xpss ( 𝑉 × 𝑊 ) ⊆ ( V × V )
3 2 sseli ( 𝐴 ∈ ( 𝑉 × 𝑊 ) → 𝐴 ∈ ( V × V ) )
4 1 copsex2gb ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) )
5 4 baibr ( 𝐴 ∈ ( V × V ) → ( 𝜑 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
6 3 5 syl ( 𝐴 ∈ ( 𝑉 × 𝑊 ) → ( 𝜑 ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )