Metamath Proof Explorer


Theorem copsex2gb

Description: Implicit substitution inference for ordered pairs. Compare copsex2ga . (Contributed by NM, 12-Mar-2014)

Ref Expression
Hypothesis copsex2ga.1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
Assertion copsex2gb ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 copsex2ga.1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
2 elvv ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
3 2 anbi1i ( ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ↔ ( ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) )
4 19.41vv ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) )
5 1 pm5.32i ( ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
6 5 2exbii ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
7 3 4 6 3bitr2ri ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) )