Step |
Hyp |
Ref |
Expression |
1 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
4 |
2 3
|
nfbi |
⊢ Ⅎ 𝑥 ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) |
5 |
|
nfa2 |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
6 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) |
7 |
6
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑦 𝜓 |
9 |
7 8
|
nfbi |
⊢ Ⅎ 𝑦 ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) |
10 |
|
opeq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) |
11 |
|
copsexgw |
⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
12 |
11
|
eqcoms |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
15 |
|
2sp |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) ) |
16 |
15
|
imp |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
17 |
14 16
|
bitr3d |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
18 |
17
|
ex |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
19 |
5 9 18
|
exlimd |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
20 |
1 4 19
|
exlimd |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
21 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
22 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) |
23 |
21 22
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
24 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
25 |
23 24
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
26 |
20 25
|
impel |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |