Step |
Hyp |
Ref |
Expression |
1 |
|
copsgndif.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
copsgndif.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
3 |
|
copsgndif.z |
⊢ 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
4 |
1 2 3
|
psgndif |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) ) |
5 |
4
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑌 ‘ ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
7 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
9 |
|
eqid |
⊢ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } |
10 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
11 |
|
eqid |
⊢ ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } ) |
12 |
1 9 10 11
|
symgfixelsi |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
14 |
10 3
|
cofipsgn |
⊢ ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) → ( ( 𝑌 ∘ 𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑌 ‘ ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) ) |
15 |
8 13 14
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑌 ∘ 𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑌 ‘ ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) ) |
16 |
|
elrabi |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) |
17 |
1 2
|
cofipsgn |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
20 |
6 15 19
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑌 ∘ 𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ) |
21 |
20
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( ( 𝑌 ∘ 𝑍 ) ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ) ) |