| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑧 ∈ V |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
1 2
|
brelrn |
⊢ ( 𝑧 𝐵 𝑦 → 𝑦 ∈ ran 𝐵 ) |
| 4 |
|
ssel |
⊢ ( ran 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
5
|
brresi |
⊢ ( 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑦 𝐴 𝑥 ) ) |
| 7 |
6
|
baib |
⊢ ( 𝑦 ∈ 𝐶 → ( 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ↔ 𝑦 𝐴 𝑥 ) ) |
| 8 |
3 4 7
|
syl56 |
⊢ ( ran 𝐵 ⊆ 𝐶 → ( 𝑧 𝐵 𝑦 → ( 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ↔ 𝑦 𝐴 𝑥 ) ) ) |
| 9 |
8
|
pm5.32d |
⊢ ( ran 𝐵 ⊆ 𝐶 → ( ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) ↔ ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) ) |
| 10 |
9
|
exbidv |
⊢ ( ran 𝐵 ⊆ 𝐶 → ( ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) ) |
| 11 |
10
|
opabbidv |
⊢ ( ran 𝐵 ⊆ 𝐶 → { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) } = { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) } ) |
| 12 |
|
df-co |
⊢ ( ( 𝐴 ↾ 𝐶 ) ∘ 𝐵 ) = { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) } |
| 13 |
|
df-co |
⊢ ( 𝐴 ∘ 𝐵 ) = { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) } |
| 14 |
11 12 13
|
3eqtr4g |
⊢ ( ran 𝐵 ⊆ 𝐶 → ( ( 𝐴 ↾ 𝐶 ) ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) ) |