Metamath Proof Explorer


Theorem cores2

Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006)

Ref Expression
Assertion cores2 ( dom 𝐴𝐶 → ( 𝐴 ( 𝐵𝐶 ) ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfdm4 dom 𝐴 = ran 𝐴
2 1 sseq1i ( dom 𝐴𝐶 ↔ ran 𝐴𝐶 )
3 cores ( ran 𝐴𝐶 → ( ( 𝐵𝐶 ) ∘ 𝐴 ) = ( 𝐵 𝐴 ) )
4 2 3 sylbi ( dom 𝐴𝐶 → ( ( 𝐵𝐶 ) ∘ 𝐴 ) = ( 𝐵 𝐴 ) )
5 cnvco ( 𝐴 ( 𝐵𝐶 ) ) = ( ( 𝐵𝐶 ) ∘ 𝐴 )
6 cocnvcnv1 ( ( 𝐵𝐶 ) ∘ 𝐴 ) = ( ( 𝐵𝐶 ) ∘ 𝐴 )
7 5 6 eqtri ( 𝐴 ( 𝐵𝐶 ) ) = ( ( 𝐵𝐶 ) ∘ 𝐴 )
8 cnvco ( 𝐴𝐵 ) = ( 𝐵 𝐴 )
9 4 7 8 3eqtr4g ( dom 𝐴𝐶 ( 𝐴 ( 𝐵𝐶 ) ) = ( 𝐴𝐵 ) )
10 9 cnveqd ( dom 𝐴𝐶 ( 𝐴 ( 𝐵𝐶 ) ) = ( 𝐴𝐵 ) )
11 relco Rel ( 𝐴 ( 𝐵𝐶 ) )
12 dfrel2 ( Rel ( 𝐴 ( 𝐵𝐶 ) ) ↔ ( 𝐴 ( 𝐵𝐶 ) ) = ( 𝐴 ( 𝐵𝐶 ) ) )
13 11 12 mpbi ( 𝐴 ( 𝐵𝐶 ) ) = ( 𝐴 ( 𝐵𝐶 ) )
14 relco Rel ( 𝐴𝐵 )
15 dfrel2 ( Rel ( 𝐴𝐵 ) ↔ ( 𝐴𝐵 ) = ( 𝐴𝐵 ) )
16 14 15 mpbi ( 𝐴𝐵 ) = ( 𝐴𝐵 )
17 10 13 16 3eqtr3g ( dom 𝐴𝐶 → ( 𝐴 ( 𝐵𝐶 ) ) = ( 𝐴𝐵 ) )