Step |
Hyp |
Ref |
Expression |
1 |
|
dfdm4 |
⊢ dom 𝐴 = ran ◡ 𝐴 |
2 |
1
|
sseq1i |
⊢ ( dom 𝐴 ⊆ 𝐶 ↔ ran ◡ 𝐴 ⊆ 𝐶 ) |
3 |
|
cores |
⊢ ( ran ◡ 𝐴 ⊆ 𝐶 → ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) ) |
4 |
2 3
|
sylbi |
⊢ ( dom 𝐴 ⊆ 𝐶 → ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) ) |
5 |
|
cnvco |
⊢ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( ◡ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) |
6 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) = ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) |
7 |
5 6
|
eqtri |
⊢ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) |
8 |
|
cnvco |
⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
9 |
4 7 8
|
3eqtr4g |
⊢ ( dom 𝐴 ⊆ 𝐶 → ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ◡ ( 𝐴 ∘ 𝐵 ) ) |
10 |
9
|
cnveqd |
⊢ ( dom 𝐴 ⊆ 𝐶 → ◡ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ◡ ◡ ( 𝐴 ∘ 𝐵 ) ) |
11 |
|
relco |
⊢ Rel ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) |
12 |
|
dfrel2 |
⊢ ( Rel ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) ↔ ◡ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) ) |
13 |
11 12
|
mpbi |
⊢ ◡ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) |
14 |
|
relco |
⊢ Rel ( 𝐴 ∘ 𝐵 ) |
15 |
|
dfrel2 |
⊢ ( Rel ( 𝐴 ∘ 𝐵 ) ↔ ◡ ◡ ( 𝐴 ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) ) |
16 |
14 15
|
mpbi |
⊢ ◡ ◡ ( 𝐴 ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) |
17 |
10 13 16
|
3eqtr3g |
⊢ ( dom 𝐴 ⊆ 𝐶 → ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ 𝐵 ) ) |