Metamath Proof Explorer


Theorem cos0

Description: Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion cos0 ( cos ‘ 0 ) = 1

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 recosval ( 0 ∈ ℝ → ( cos ‘ 0 ) = ( ℜ ‘ ( exp ‘ ( i · 0 ) ) ) )
3 1 2 ax-mp ( cos ‘ 0 ) = ( ℜ ‘ ( exp ‘ ( i · 0 ) ) )
4 it0e0 ( i · 0 ) = 0
5 4 fveq2i ( exp ‘ ( i · 0 ) ) = ( exp ‘ 0 )
6 ef0 ( exp ‘ 0 ) = 1
7 5 6 eqtri ( exp ‘ ( i · 0 ) ) = 1
8 7 fveq2i ( ℜ ‘ ( exp ‘ ( i · 0 ) ) ) = ( ℜ ‘ 1 )
9 re1 ( ℜ ‘ 1 ) = 1
10 8 9 eqtri ( ℜ ‘ ( exp ‘ ( i · 0 ) ) ) = 1
11 3 10 eqtri ( cos ‘ 0 ) = 1