| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 3 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) ) | 
						
							| 4 | 2 1 3 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) | 
						
							| 5 | 4 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 | 5 | resqcld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 7 | 6 | rehalfcld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 8 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( 𝐴 ↑ 2 )  /  2 )  ∈  ℝ )  →  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  ∈  ℝ ) | 
						
							| 9 | 1 7 8 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  ∈  ℂ ) | 
						
							| 11 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 12 | 5 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℂ ) | 
						
							| 13 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 14 | 11 12 13 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 15 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 16 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 17 | 16 | eftlcl | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  4  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 18 | 14 15 17 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 19 | 18 | recld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 21 | 16 | recos4p | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  =  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 22 | 5 21 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( cos ‘ 𝐴 )  =  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 23 | 10 20 22 | mvrladdd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( cos ‘ 𝐴 )  −  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) ) )  =  ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ( cos ‘ 𝐴 )  −  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) ) ) )  =  ( abs ‘ ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 25 | 20 | abscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 26 | 18 | abscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 27 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 28 |  | nndivre | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  6  ∈  ℕ )  →  ( ( 𝐴 ↑ 2 )  /  6 )  ∈  ℝ ) | 
						
							| 29 | 6 27 28 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  6 )  ∈  ℝ ) | 
						
							| 30 |  | absrele | ⊢ ( Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ  →  ( abs ‘ ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  ≤  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 31 | 18 30 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  ≤  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 32 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  4  ∈  ℕ0 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ ) | 
						
							| 33 | 5 15 32 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ ) | 
						
							| 34 |  | nndivre | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  6  ∈  ℕ )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ∈  ℝ ) | 
						
							| 35 | 33 27 34 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ∈  ℝ ) | 
						
							| 36 | 16 | ef01bndlem | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  <  ( ( 𝐴 ↑ 4 )  /  6 ) ) | 
						
							| 37 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 38 | 37 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  2  ∈  ℕ0 ) | 
						
							| 39 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 40 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 41 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 42 |  | 2lt4 | ⊢ 2  <  4 | 
						
							| 43 | 40 41 42 | ltleii | ⊢ 2  ≤  4 | 
						
							| 44 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 45 | 44 | eluz1i | ⊢ ( 4  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 4  ∈  ℤ  ∧  2  ≤  4 ) ) | 
						
							| 46 | 39 43 45 | mpbir2an | ⊢ 4  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  4  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 48 | 4 | simp2bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  𝐴 ) | 
						
							| 49 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 50 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 51 | 49 5 50 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 52 | 48 51 | mpd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  ≤  𝐴 ) | 
						
							| 53 | 4 | simp3bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ≤  1 ) | 
						
							| 54 | 5 38 47 52 53 | leexp2rd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ≤  ( 𝐴 ↑ 2 ) ) | 
						
							| 55 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 56 | 55 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  6  ∈  ℝ ) | 
						
							| 57 |  | 6pos | ⊢ 0  <  6 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  6 ) | 
						
							| 59 |  | lediv1 | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  ( 6  ∈  ℝ  ∧  0  <  6 ) )  →  ( ( 𝐴 ↑ 4 )  ≤  ( 𝐴 ↑ 2 )  ↔  ( ( 𝐴 ↑ 4 )  /  6 )  ≤  ( ( 𝐴 ↑ 2 )  /  6 ) ) ) | 
						
							| 60 | 33 6 56 58 59 | syl112anc | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  ≤  ( 𝐴 ↑ 2 )  ↔  ( ( 𝐴 ↑ 4 )  /  6 )  ≤  ( ( 𝐴 ↑ 2 )  /  6 ) ) ) | 
						
							| 61 | 54 60 | mpbid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ≤  ( ( 𝐴 ↑ 2 )  /  6 ) ) | 
						
							| 62 | 26 35 29 36 61 | ltletrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  <  ( ( 𝐴 ↑ 2 )  /  6 ) ) | 
						
							| 63 | 25 26 29 31 62 | lelttrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ℜ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  <  ( ( 𝐴 ↑ 2 )  /  6 ) ) | 
						
							| 64 | 24 63 | eqbrtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ( cos ‘ 𝐴 )  −  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) ) ) )  <  ( ( 𝐴 ↑ 2 )  /  6 ) ) | 
						
							| 65 | 5 | recoscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 66 | 65 9 29 | absdifltd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( abs ‘ ( ( cos ‘ 𝐴 )  −  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) ) ) )  <  ( ( 𝐴 ↑ 2 )  /  6 )  ↔  ( ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  <  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  <  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  /  6 ) ) ) ) ) | 
						
							| 67 |  | 1cnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  1  ∈  ℂ ) | 
						
							| 68 | 7 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 69 | 29 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  6 )  ∈  ℂ ) | 
						
							| 70 | 67 68 69 | subsub4d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( 1  −  ( ( ( 𝐴 ↑ 2 )  /  2 )  +  ( ( 𝐴 ↑ 2 )  /  6 ) ) ) ) | 
						
							| 71 |  | halfpm6th | ⊢ ( ( ( 1  /  2 )  −  ( 1  /  6 ) )  =  ( 1  /  3 )  ∧  ( ( 1  /  2 )  +  ( 1  /  6 ) )  =  ( 2  /  3 ) ) | 
						
							| 72 | 71 | simpri | ⊢ ( ( 1  /  2 )  +  ( 1  /  6 ) )  =  ( 2  /  3 ) | 
						
							| 73 | 72 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  +  ( 1  /  6 ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) | 
						
							| 74 | 6 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 75 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 76 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 77 | 75 76 | reccli | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 78 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 79 | 27 | nnne0i | ⊢ 6  ≠  0 | 
						
							| 80 | 78 79 | reccli | ⊢ ( 1  /  6 )  ∈  ℂ | 
						
							| 81 |  | adddi | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  ( 1  /  2 )  ∈  ℂ  ∧  ( 1  /  6 )  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  +  ( 1  /  6 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 82 | 77 80 81 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  +  ( 1  /  6 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 83 | 74 82 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  +  ( 1  /  6 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 84 | 73 83 | eqtr3id | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 85 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 86 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 87 | 85 86 | pm3.2i | ⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 ) | 
						
							| 88 |  | div12 | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) ) | 
						
							| 89 | 75 87 88 | mp3an13 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) ) | 
						
							| 90 | 74 89 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) ) | 
						
							| 91 |  | divrec | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  /  2 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) ) ) | 
						
							| 92 | 75 76 91 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( ( 𝐴 ↑ 2 )  /  2 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) ) ) | 
						
							| 93 | 74 92 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  2 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) ) ) | 
						
							| 94 |  | divrec | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  6  ∈  ℂ  ∧  6  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  /  6 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) | 
						
							| 95 | 78 79 94 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( ( 𝐴 ↑ 2 )  /  6 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) | 
						
							| 96 | 74 95 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  6 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) | 
						
							| 97 | 93 96 | oveq12d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 2 )  /  2 )  +  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 98 | 84 90 97 | 3eqtr4rd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 2 )  /  2 )  +  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) | 
						
							| 99 | 98 | oveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( ( ( 𝐴 ↑ 2 )  /  2 )  +  ( ( 𝐴 ↑ 2 )  /  6 ) ) )  =  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) | 
						
							| 100 | 70 99 | eqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) | 
						
							| 101 | 100 | breq1d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  <  ( cos ‘ 𝐴 )  ↔  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 ) ) ) | 
						
							| 102 | 67 68 69 | subsubd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( ( ( 𝐴 ↑ 2 )  /  2 )  −  ( ( 𝐴 ↑ 2 )  /  6 ) ) )  =  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  /  6 ) ) ) | 
						
							| 103 | 71 | simpli | ⊢ ( ( 1  /  2 )  −  ( 1  /  6 ) )  =  ( 1  /  3 ) | 
						
							| 104 | 103 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  −  ( 1  /  6 ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  3 ) ) | 
						
							| 105 |  | subdi | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  ( 1  /  2 )  ∈  ℂ  ∧  ( 1  /  6 )  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  −  ( 1  /  6 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 106 | 77 80 105 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  −  ( 1  /  6 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 107 | 74 106 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 1  /  2 )  −  ( 1  /  6 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 108 | 104 107 | eqtr3id | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  3 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 109 |  | divrec | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  3  ∈  ℂ  ∧  3  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  /  3 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  3 ) ) ) | 
						
							| 110 | 85 86 109 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( ( 𝐴 ↑ 2 )  /  3 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  3 ) ) ) | 
						
							| 111 | 74 110 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  3 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  3 ) ) ) | 
						
							| 112 | 93 96 | oveq12d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 2 )  /  2 )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 1  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 113 | 108 111 112 | 3eqtr4rd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 2 )  /  2 )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( ( 𝐴 ↑ 2 )  /  3 ) ) | 
						
							| 114 | 113 | oveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( ( ( 𝐴 ↑ 2 )  /  2 )  −  ( ( 𝐴 ↑ 2 )  /  6 ) ) )  =  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) | 
						
							| 115 | 102 114 | eqtr3d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  /  6 ) )  =  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) | 
						
							| 116 | 115 | breq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( cos ‘ 𝐴 )  <  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  /  6 ) )  ↔  ( cos ‘ 𝐴 )  <  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) | 
						
							| 117 | 101 116 | anbi12d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  −  ( ( 𝐴 ↑ 2 )  /  6 ) )  <  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  <  ( ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) )  +  ( ( 𝐴 ↑ 2 )  /  6 ) ) )  ↔  ( ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  <  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) ) | 
						
							| 118 | 66 117 | bitrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( abs ‘ ( ( cos ‘ 𝐴 )  −  ( 1  −  ( ( 𝐴 ↑ 2 )  /  2 ) ) ) )  <  ( ( 𝐴 ↑ 2 )  /  6 )  ↔  ( ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  <  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) ) | 
						
							| 119 | 64 118 | mpbid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  <  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) |