| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) | 
						
							| 5 | 4 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 | 5 | resqcld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 8 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 9 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 10 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 ) | 
						
							| 12 |  | div12 | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) ) | 
						
							| 13 | 8 11 12 | mp3an13 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℂ  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) ) | 
						
							| 14 | 7 13 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) ) ) | 
						
							| 15 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 16 |  | expgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ℤ  ∧  0  <  𝐴 )  →  0  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 17 | 15 16 | mp3an2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 )  →  0  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 19 | 4 18 | sylbi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 20 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 21 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 22 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 23 |  | 3pos | ⊢ 0  <  3 | 
						
							| 24 | 21 22 22 23 | ltdiv1ii | ⊢ ( 2  <  3  ↔  ( 2  /  3 )  <  ( 3  /  3 ) ) | 
						
							| 25 | 20 24 | mpbi | ⊢ ( 2  /  3 )  <  ( 3  /  3 ) | 
						
							| 26 | 9 10 | dividi | ⊢ ( 3  /  3 )  =  1 | 
						
							| 27 | 25 26 | breqtri | ⊢ ( 2  /  3 )  <  1 | 
						
							| 28 | 21 22 10 | redivcli | ⊢ ( 2  /  3 )  ∈  ℝ | 
						
							| 29 |  | ltmul2 | ⊢ ( ( ( 2  /  3 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 2 ) ) )  →  ( ( 2  /  3 )  <  1  ↔  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) )  <  ( ( 𝐴 ↑ 2 )  ·  1 ) ) ) | 
						
							| 30 | 28 2 29 | mp3an12 | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 2 ) )  →  ( ( 2  /  3 )  <  1  ↔  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) )  <  ( ( 𝐴 ↑ 2 )  ·  1 ) ) ) | 
						
							| 31 | 27 30 | mpbii | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 2 ) )  →  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) )  <  ( ( 𝐴 ↑ 2 )  ·  1 ) ) | 
						
							| 32 | 6 19 31 | syl2anc | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) )  <  ( ( 𝐴 ↑ 2 )  ·  1 ) ) | 
						
							| 33 | 7 | mulridd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  1 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 34 | 32 33 | breqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  ·  ( 2  /  3 ) )  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 35 | 14 34 | eqbrtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 36 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 37 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 38 | 36 37 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 39 | 38 | imdistani | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 40 |  | le2sq2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 1  ∈  ℝ  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 41 | 2 40 | mpanr1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐴  ≤  1 )  →  ( 𝐴 ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 42 | 39 41 | stoic3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 )  →  ( 𝐴 ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 43 | 4 42 | sylbi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 44 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 45 | 43 44 | breqtrdi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 2 )  ≤  1 ) | 
						
							| 46 |  | redivcl | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  3  ∈  ℝ  ∧  3  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  /  3 )  ∈  ℝ ) | 
						
							| 47 | 22 10 46 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℝ  →  ( ( 𝐴 ↑ 2 )  /  3 )  ∈  ℝ ) | 
						
							| 48 | 6 47 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 2 )  /  3 )  ∈  ℝ ) | 
						
							| 49 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( ( 𝐴 ↑ 2 )  /  3 )  ∈  ℝ )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  ∈  ℝ ) | 
						
							| 50 | 21 48 49 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  ∈  ℝ ) | 
						
							| 51 |  | ltletr | ⊢ ( ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  ∈  ℝ  ∧  ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  ( 𝐴 ↑ 2 )  ∧  ( 𝐴 ↑ 2 )  ≤  1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  1 ) ) | 
						
							| 52 | 2 51 | mp3an3 | ⊢ ( ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  ∈  ℝ  ∧  ( 𝐴 ↑ 2 )  ∈  ℝ )  →  ( ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  ( 𝐴 ↑ 2 )  ∧  ( 𝐴 ↑ 2 )  ≤  1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  1 ) ) | 
						
							| 53 | 50 6 52 | syl2anc | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  ( 𝐴 ↑ 2 )  ∧  ( 𝐴 ↑ 2 )  ≤  1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  1 ) ) | 
						
							| 54 | 35 45 53 | mp2and | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  1 ) | 
						
							| 55 |  | posdif | ⊢ ( ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  1  ↔  0  <  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) ) | 
						
							| 56 | 50 2 55 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  <  1  ↔  0  <  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) ) | 
						
							| 57 | 54 56 | mpbid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) | 
						
							| 58 |  | cos01bnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  <  ( 1  −  ( ( 𝐴 ↑ 2 )  /  3 ) ) ) ) | 
						
							| 59 | 58 | simpld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 ) ) | 
						
							| 60 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) )  ∈  ℝ )  →  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  ∈  ℝ ) | 
						
							| 61 | 2 50 60 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  ∈  ℝ ) | 
						
							| 62 | 5 | recoscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 63 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( ( 0  <  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  ∧  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 ) )  →  0  <  ( cos ‘ 𝐴 ) ) ) | 
						
							| 64 | 36 61 62 63 | mp3an2i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 0  <  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  ∧  ( 1  −  ( 2  ·  ( ( 𝐴 ↑ 2 )  /  3 ) ) )  <  ( cos ‘ 𝐴 ) )  →  0  <  ( cos ‘ 𝐴 ) ) ) | 
						
							| 65 | 57 59 64 | mp2and | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  ( cos ‘ 𝐴 ) ) |