Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
5 |
4
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
6 |
5
|
resqcld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
8 |
|
2cn |
⊢ 2 ∈ ℂ |
9 |
|
3cn |
⊢ 3 ∈ ℂ |
10 |
|
3ne0 |
⊢ 3 ≠ 0 |
11 |
9 10
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
12 |
|
div12 |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
13 |
8 11 12
|
mp3an13 |
⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
14 |
7 13
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
15 |
|
2z |
⊢ 2 ∈ ℤ |
16 |
|
expgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 2 ) ) |
17 |
15 16
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 2 ) ) |
18 |
17
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) → 0 < ( 𝐴 ↑ 2 ) ) |
19 |
4 18
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 𝐴 ↑ 2 ) ) |
20 |
|
2lt3 |
⊢ 2 < 3 |
21 |
|
2re |
⊢ 2 ∈ ℝ |
22 |
|
3re |
⊢ 3 ∈ ℝ |
23 |
|
3pos |
⊢ 0 < 3 |
24 |
21 22 22 23
|
ltdiv1ii |
⊢ ( 2 < 3 ↔ ( 2 / 3 ) < ( 3 / 3 ) ) |
25 |
20 24
|
mpbi |
⊢ ( 2 / 3 ) < ( 3 / 3 ) |
26 |
9 10
|
dividi |
⊢ ( 3 / 3 ) = 1 |
27 |
25 26
|
breqtri |
⊢ ( 2 / 3 ) < 1 |
28 |
21 22 10
|
redivcli |
⊢ ( 2 / 3 ) ∈ ℝ |
29 |
|
ltmul2 |
⊢ ( ( ( 2 / 3 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 2 ) ) ) → ( ( 2 / 3 ) < 1 ↔ ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) ) |
30 |
28 2 29
|
mp3an12 |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 2 ) ) → ( ( 2 / 3 ) < 1 ↔ ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) ) |
31 |
27 30
|
mpbii |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 2 ) ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) |
32 |
6 19 31
|
syl2anc |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) |
33 |
7
|
mulid1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · 1 ) = ( 𝐴 ↑ 2 ) ) |
34 |
32 33
|
breqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( 𝐴 ↑ 2 ) ) |
35 |
14 34
|
eqbrtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ) |
36 |
|
0re |
⊢ 0 ∈ ℝ |
37 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
38 |
36 37
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
39 |
38
|
imdistani |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
40 |
|
le2sq2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 1 ∈ ℝ ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
41 |
2 40
|
mpanr1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
42 |
39 41
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
43 |
4 42
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
44 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
45 |
43 44
|
breqtrdi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ≤ 1 ) |
46 |
|
redivcl |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) |
47 |
22 10 46
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 2 ) ∈ ℝ → ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) |
48 |
6 47
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) |
49 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ) |
50 |
21 48 49
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ) |
51 |
|
ltletr |
⊢ ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ∧ ( 𝐴 ↑ 2 ) ≤ 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) ) |
52 |
2 51
|
mp3an3 |
⊢ ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℝ ) → ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ∧ ( 𝐴 ↑ 2 ) ≤ 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) ) |
53 |
50 6 52
|
syl2anc |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ∧ ( 𝐴 ↑ 2 ) ≤ 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) ) |
54 |
35 45 53
|
mp2and |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) |
55 |
|
posdif |
⊢ ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ↔ 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) ) |
56 |
50 2 55
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ↔ 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) ) |
57 |
54 56
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
58 |
|
cos01bnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
59 |
58
|
simpld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) |
60 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ) → ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∈ ℝ ) |
61 |
2 50 60
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∈ ℝ ) |
62 |
5
|
recoscld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
63 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( ( 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∧ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) → 0 < ( cos ‘ 𝐴 ) ) ) |
64 |
36 61 62 63
|
mp3an2i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∧ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) → 0 < ( cos ‘ 𝐴 ) ) ) |
65 |
57 59 64
|
mp2and |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ 𝐴 ) ) |